

"It is in the preparation of catalysts that the chemist is most likely to revert to type and to employ alchemical methods. From all evidence, it seems that the work should be approached with humility and supplication, and the production of a good catalyst received with rejoicing and thanksgiving."

Murray Raney, Ind. Eng. Chem. 1940, 32, 1199.

- > Activity
- Selectivity
- Stability
 - coking
 - poisoning by reactands
 - sintering
 - poisoning by impurities
- Morphology
- > Mechanical strength/resistance
- > Thermal properties
- Regeneration
- Reproducibility
- No patent / patentable
- > Costs

Supported Catalysts: Precipitation-Deposition

Ideal precipitation if precipitation is initiated at the same time in whole solution (homogeneous precipitation)

pH:

Urea $CO(NH_2)_2 \rightleftharpoons NH_4^+ + CNO^ CNO^- + 3 H_2O \rightleftharpoons NH_4^+ + 2 OH^- + CO_2$ $NaNO_2^ 3 NO_2^- + H_2O \rightleftharpoons 2 NO + NO_3^- + 2 OH^- (no air!)$

Oxidation state:

Fe ²⁺ more soluble than Fe ³⁺, Mn²⁺ more than Mn³⁺/Mn(IV), Mⁿ⁺ may get oxidized in solution (e.g. O_2 from air)

Removal of complexation agents: desorption of NH₃ from ammine complexes, oxidation of inorganic complexing agents with H₂O₂

Mechanism	Strength	Comment
Van der Waals forces	medium at short distances, rapid decay with distance	Magnitude depends on the interaction potentials
Electrostatic forces	Weak, but dominant for distances approaching µm	Can be repulsive, if charging of particles with same sign occurs; different for conductors and insulators
Liquid bridges	Strong	
Capillary forces	Very strong	Full saturation of granule with liquid
Solid bridges	Variable	Depends very much on conditions of solvent evaporation and crystallizing solid in bridge
Covalent bonds	Very strong	

Catalysis research 1911 - and partly still today

Source: BASF Aktiengesellschaft

Catalyst Development

- "Rational" and "trial & error" approach
- Usually manual manufacturing
- Limited reproducibility
- Sequential testing
- Insufficient data for model development

Transition technology to speed up conventional catalysis research is clearly needed

High Throughput Experimentation

Automated Synthesis

