Raman spectroscopy: Basic principles and applications

Christian Hess

- Basic principles
 - Resonance Raman scattering
 - Surface Enhanced Raman Scattering (SERS)
- Instrumentation
 - Spectrometer
 - Excitation sources
- Raman in catalysis
 - In situ cells
 - In situ Raman (of working catalysts)

C.V. Raman (1928)

• Basic principles

- Resonance Raman scattering
- Surface Enhanced Raman Scattering (SERS)
- Instrumentation
 - Spectrometer
 - Excitation sources
- Raman in catalysis
 - In situ cells
 - In situ Raman (of working catalysts)

Introduction

Why Raman spectroscopy?

- Information on rotational and vibrational levels
- Raman effect small but accessible by use of lasers
- Complementary information to IR spectroscopy
 - → homonuclear diatomic molecules, low frequency range
- In situ analysis of organic and inorganic compounds
- Analysis of aqueous solutions and solids (powders)
- Using resonance and surface enhancement effects ~10¹⁰
 - → Trace gas/single molecule analysis molecular structure

Classical description

- Spatial charge separation under influence of electric field *E*
 - → induced dipole moment μ :

 $\boldsymbol{\mu} = \boldsymbol{\alpha} \, \boldsymbol{E} \tag{1}$

 α : polarizability

 \rightarrow Example: polarizability changes during CO₂ vibrations

Example: Polarizability changes CO₂

Vibrational modes of CO₂

Example: Polarizability changes CO₂

Vibrational modes of CO₂

Classical description

- Spatial charge separation under influence of electric field *E*
 - → induced dipole moment μ :

 $\boldsymbol{\mu} = \boldsymbol{\alpha} \, \boldsymbol{E} \tag{1}$

- α : polarizability
- Electric field \boldsymbol{E} due to electromagn. wave with frequency v_0
 - $\boldsymbol{E} = \boldsymbol{E}_{\mathbf{0}} \cos 2\pi \, \boldsymbol{v}_0 t \tag{2}$
 - $\rightarrow \boldsymbol{\mu} = \alpha \, \boldsymbol{E_0} \cos 2\pi \, \boldsymbol{v_0} t \tag{3}$
 - \rightarrow emission of light at same frequency v_0

→
$$I = (2/3c^3) \mu^*$$

= $(16\pi^4 \alpha^2 E_0^2/3c^3) v_0^4$ $\mu^* = \left(\frac{d^2 \mu}{dt^2}\right)^2$

(4) C. Hess, 2006

Classical description

- Internal vibrational motion with Eigenfrequency $v_{\rm M}$ $q = q_0 \cos 2\pi v_{\rm M} t$
- Polarizability α → develop in series
 α = α_{q=0} + (∂α/∂q)_{q=0} q + higher order terms (6)

$$\rightarrow \boldsymbol{\mu} = \boldsymbol{\alpha} \boldsymbol{E}$$

$$= (\alpha_{q=0} + (\partial \alpha / \partial q)_{q=0} q_0 \cos 2\pi v_M t) \boldsymbol{E}_0 \cos 2\pi v_0 t$$

$$= \alpha_{q=0} \boldsymbol{E}_0 \cos 2\pi v_0 t + \frac{1}{2} (\partial \alpha / \partial q)_{q=0} q_0 \boldsymbol{E}_0 [\cos 2\pi (v_0 - v_M)t + \cos 2\pi (v_0 + v_M)t]$$

Rayleigh

Stokes/Anti-Stokes C. Hess, 2006

(5)

Q.M. description

→ harmonic oscillator: $\Delta v = \pm 1$

inelastic impact	elastic impact	inelastic impact	
ΔE _M > 0	ΔE _M = 0	ΔE _M < 0	
$v = v_0 - v_{vib} < v_0$	$v = v_0$	$v' = v_0 - v_{vib} > v_0$	
hv_{0} $h(v_{0} - v_{vib})$ $- v = 1$ $- v = 0$	$ \begin{array}{c} $	hv_{0} hv_{0} $h(v_{0} + v_{vib})$ $(v_{0} + v_{vib})$	
Stokes	Rayleigh	Anti-Stokes	

Q.M. description

Raman intensity?

→
$$I_{\rm s} = N_{\rm i} \sigma_{\rm R}({\rm i} \rightarrow {\rm f}) I_{\rm L}$$
 (8)
 $N_{\rm i}$: initial state population
 $\sigma_{\rm R}({\rm i} \rightarrow {\rm f})$: Raman cross section for transition $E_{\rm i} \rightarrow E_{\rm f}$
 $I_{\rm L}$: Laser intensity

→ thermal equilibrium: Boltzmann distribution for state N_i at T

 $N_{\rm i} = N_0 \exp(-ihv_{\rm vib}/kT) \tag{9}$

→ lower energy state: higher initial state population

I(Stokes) > *I*(Anti-Stokes)

 \rightarrow Example: Stokes/Anti-Stokes intensities of CHCl₃

Q.M. description

• Basic principles

- Resonance Raman scattering
- Surface Enhanced Raman Scattering (SERS)
- Instrumentation
 - Spectrometer
 - Excitation sources
- Raman in catalysis
 - In situ cells
 - In situ Raman (of working catalysts)

Introduction to Resonance Raman scattering

→ Polarizability tensor α (single e state):

$$\alpha_{\alpha\beta} = \frac{1}{\hbar} \sum_{v} \left(\frac{\langle g1 | \hat{\mu}_{\alpha} | ev \rangle \langle ev | \hat{\mu}_{\beta} | g0 \rangle}{w_{\text{ev,g0}} - w_{0} + i\Gamma_{\text{ev}}} \right)$$

 $\hat{\mu}_{\alpha}, \hat{\mu}_{\beta}$: Electric dipole moment operator i.a. with incident/scattered light

Example: β -Carotin

Example: β -Carotin

Basic principles

- Resonant Raman spectroscopy
- Surface Enhanced Raman Scattering (SERS)
- Instrumentation
 - Spectrometer
 - Excitation sources
- Raman in catalysis
 - In situ cells
 - In situ Raman (of working catalysts)

Introduction to SERS

'Normal' Raman scattering

 $I_{NRS}(v_S) = N I(v_L) \sigma_{R,free}$

SERS mechanism - enhancement factors

Surface-enhanced Raman scattering

SERS substrate

SEM images of the silver nanowire ML on Si wafer

➡ Deposited ML shows domains of aligned silver nanowires

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Nano Lett. 3 (2003) 1229

SERS substrate

UV-VIS absorption spectra of silver nanowire ML

⇒ Broadened extinction 500-600 nm due to wire-wire coupling

SERS example: 1-hexadecanthiol/Ag-LB film

• Enhancement factor EF:

 $\mathsf{EF} = [\mathsf{I}_{\mathsf{SERS}}]/[\mathsf{I}_{\mathsf{Raman}}] \times [\mathsf{M}_{\mathsf{b}}]/[\mathsf{M}_{\mathsf{ads}}]$

- thiol head group (2.3 Å)², closed-packed layer
 ⇒ molecule conc. on surface: 2.5 × 10¹⁴/cm²
 - ⇒ 532nm, band at 1295 cm⁻¹

⇔ EF = 2 × 10⁵

SERRS example: Rhodamine 6G/Ag-LB film

SERRS = Surface Enhanced Resonance Raman Scattering

- Linear relationship between intensity and concentration
 surface not saturated
- Langmuir description using

$$M_{ads} = M_{ads,max} Ka_0/(1+Ka_0)$$

yields ΔG_{ads} = 46 KJ/mol

 Large EF = 10⁹ as result of SERS and Resonant Raman

- Basic principles
 - Resonant Raman spectroscopy
 - Surface Enhanced Raman Scattering (SERS)
- Instrumentation
 - Spectrometer
 - Excitation sources
- Raman in catalysis
 - In situ cells
 - In situ Raman (of working catalysts)

Raman spectrometer

Challenges to record (good) spectra

- Separate inelastically scattered from Rayleigh (99.99999%) light
- Collect the maximum number of inelastically scattered photons

Triple spectrograph

- first 2 gratings subtractive
 - → removal Rayleigh (40% E)
- grating 3/4 creates dispersion
- detection: diode array

Fourier Transform (FT) - Raman

- Michelson interferometer (Jacquinot, multiplex)
- NIR (1.064 µm) excitation,
- → less fluorescence
- → self absorption

Modern Raman spectrometer

- Basic principles
 - Resonant Raman spectroscopy
 - Surface Enhanced Raman Scattering (SERS)
- Instrumentation
 - Spectrometer
 - Excitation sources
- Raman in catalysis
 - In situ cells
 - In situ Raman (of working catalysts)

Laser excitation wavelengths

• fluorescence (→NIR, UV)

- Basic principles
 - Resonant Raman spectroscopy
 - Surface Enhanced Raman Scattering (SERS)
- Instrumentation
 - Spectrometer
 - Excitation sources
- Raman in catalysis
 - In situ cells
 - In situ Raman (of working catalysts)

In situ Raman cells

- Laser excitation at low laser power to minimize heating
- Raman cell design mimics plug-flow reactor: gases flow through catalyst bed
- 50 100 mg sample

Plug-flow reactor

In situ Raman cells

- Particle motion
 → reduces laser
 beam exposure
- Raman cell mimics fluidized bed reactor: gases flow through catalyst bed
- ~200 mg sample
- UV laser excitation

In situ Raman cells

- Sample rotation
 → reduces laser
 beam exposure
- Gas flow over catalyst bed
- Requires pellets
- ~200 mg sample

- Basic principles
 - Resonant Raman spectroscopy
 - Surface Enhanced Raman Scattering (SERS)
- Instrumentation
 - Spectrometer
 - Excitation sources
- Raman in catalysis
 - In situ cells
 - In situ Raman (of working catalysts)

The NO_x storage-reduction concept

- Lower fuel consumption by use of engines operating with excess oxygen
 - → <u>Problem</u>: Reduction of NO_x
 - → <u>Solution</u>: Storage of NO_x followed by short rich periods for reduction
- Typical storage catalysts consist of storage material (BaO) and metal (Pt)

BaO/Al₂O₃ deactivates at higher temperatures (due to Ba-Al alloying)*
 → Focus on BaO/MgO which is stable up to at least 900°C

* Jang et al., Catal. Lett. 77 (2001) 1

Experimental setup: In situ Raman spectroscopy

Raman-scattered light

- Laser excitation at 532 nm, low laser power of ~6 mW minimizes heating of sample
- Raman cell design mimics typical plug-flow reactor: Gases flow through catalyst bed (50 mg) at ~40 ml/min

Preparation of the 14 mol % BaO/MgO catalyst

- Impregnation of Ba(NO₃)₂ on MgO (Fisher)
- Drying at 100°C, heating at 120°C for 2h
- Heating to 900°C in He for 2h to decompose Ba(NO₃)₂ and BaCO₃
- BaO formation confirmed by XRD

- TEM shows formation of homogeneous BaO phase
- X-ray analysis confirms the presence of BaO/MgO

Jeol 2010, 200 kV, x40k

In situ Raman spectra during NO₂ exposure

→ Formation of nitro species precedes that of nitrates C. Hess, 2006

In situ Raman spectra during NO₂ exposure

Temperature dependence

→ 300°C: Formation of nitro species precedes nitrates (as at 400°C) → 475°C: Higher rate of NO_3^- formation but smaller storage capacity

In situ Raman spectra after catalyst pre-oxidation

→ Pre-oxidation of BaO enables direct nitrate formation at 400°C

In situ Raman spectra during NO₂ /O₂ exposure

Temperature dependence

Presence of oxygen surpresses formation of nitro species increases the rate of nitrate formation

Summary - Mechanism for NO₂ storage

C. Hess and J.H. Lunsford, JPCB 106 (2002) 6358 C. Hess and J.H. Lunsford, JPCB 107 (2003) 1982

Summary - NO₂ storage capacity

Summary: Study reveals Raman key features

- Raman spectra without interference of gas phase
- simple glass/quartz cell
- *in situ* spectra can be recorded at high temperatures (500°C)
- time-dependent in situ experiments
- Raman spectra down to ~100 cm⁻¹
- detection of IR inactive peroxide vibrations
- detection of adsorbed species and catalyst bulk phase
- quantification using internal reference
- self scattering of MgO support low
 - → Raman spectra of supported phase
 - → other supports?

IR vs Raman of typical oxide supports

I.E. Wachs, Catal. Today 27 (1996) 437

n-pentane isomerization over 17 wt% WO₃/ZrO₂

S. Kuba and H. Knözinger J. Raman Spectrosc. 33 (2002) 325

Relation of Raman intensity to sample reflectance

Raman intensity based on Kubelka-Munk formalism:

$$\psi_{\infty} = \frac{\rho I_o}{s} \frac{R_{\infty} (1 + R_{\infty})}{(1 - R_{\infty})} = \frac{\rho I_0}{s} G(R_{\infty})$$

 ρ : Raman coefficient (~ v^4) s: scattering coefficient

$$\psi_{\infty}(v) = \frac{cv^4 I_o}{s} \frac{R_{\infty}(v) [1 + R_{\infty}(v)]}{[1 - R_{\infty}(v)]}$$
$$= \frac{cI_0}{s} G[R_{\infty}(v)]v^4$$

 $R_{\infty}(v)$: can be measured by diffuse reflectance UV-Vis

Raman intensity correction

Structure of vanadia in V_xO_y/AI_2O_3

Z. Wu, H.-S. Kim, P.C. Stair, S. Rugmini, S.D. Jackson, JPCB (2005)

UV Raman – selective resonance enhancement

MeOH partial oxidation on polycryst. Ag (SERS)

Raman Shift (cm⁻¹)

- \rightarrow thermal cycles
- \rightarrow 2 diff. atomic O species (isotope shifts ~20 cm⁻¹)

TABLE 2: Methanol Conversion and Product Selectivities Formed over 50 mg of a Polycrystalline Ag Catalyst with a Methanol Concentration of 6.16 mol% and a Total Flow Rate of 100 mL/min (helium used as balance gas) at a Molar Ratio of MeOH/O₂ = 3.08

<i>T</i> (°C)	conv. (%)	selectivity			
	MeOH	HCHO	MF	DMM	CO
250	15.9	29.9	47.0	0.0	23.1
300	39.8	42.1	28.2	0.3	29.4
350	55.8	69.9	13.4	0.2	33.5
400	69.0	83.8	5.7	0.2	9.5
450	79.8	90.0	2.1	0.1	7.8
500	81.4	92.5	0.8	0.0	6.7

 \rightarrow active site? → assignment?

C.-B. Wang, G. Deo, I.E. Wachs, JPCB 103 (1999) 5645

Summary: Raman for catalytic applications

- Raman spectra accessible without interference of gas phase
- simple glass/quartz cell
- *in situ* spectra can be recorded at high temperatures (500°C)
- time-dependent in situ experiments
- Raman spectra of adsorbates and catalyst down to ~100 cm⁻¹
- quantification using internal reference
 - \rightarrow correction for changes in sample reflectance (\rightarrow DR UV-Vis)
- self scattering of common support materials low
 - → Raman spectra of supported phase
- Signal enhancement as result of resonance Raman and SERS

