Lecture Series Heterogeneous Catalysis

Fritz-Haber-Institute (Max Planck Society) November 11, 2006

Micro-Structured Reactors and Catalysis

M. Baerns c/o FHI (MPG); Baerns@FHI-Berlin.MPG.de

ACA former Institute of Applied Chemistry Berlin-Adlershof, now Leibniz-Institute for Catalysis, Branch Berlin: N. Dropka, K. Jähnisch, E. Kondratenko, V. Kondratenko, R. Krähnert, N. Steinfeldt, D. Wolf

EPFL Ecole Polytechnique Federale Lausannne: A. Renken et al.

FHI (MPG) Dept. Inorg. Chem.: P. Beato, R. Schlögl, G. Weinberg

IMM Institut für Mikrotechnik Mainz: V. Hessel et al.

University of New Mexico, Dept. Chem. & Nuclear Engineering: A.K. Datye, T. Konant, A. Karim

DEMIS Project: Degussa, Uhde, MPI-Mühlheim, TU Darmstadt und Chemnitz

Principles of Micro-Structured Reactors: Application in Catalysis & Process Engineering

Subjects of Presentation

- 1. Principles of Micro-Structured Reactors (MSR)
- 2. MSR as Tool in Catalysis
 - 2.1 Provision of kinetic data
 - 2.2 (in-situ) Characterization of catalytic materials
 - 2.3 Application of MSR in industrial catalysis
 - Hydrogen-driven fuel cells
 - Propene oxidation by H_2O_2 vapor

Scales of chemical reactors

	Industry	Laboratory	Microsystem	
Volume	30 m ³	10 ⁻³ m ³	3 10 ⁻¹¹ m ³	
Scale-down		1:3 10 ⁻⁵	1: 10 ⁻¹²	
Diameter	2 m	2 cm	20 μm	
<u>Surfac</u> e Volume	$2\frac{m^2}{m^3}$	$200\frac{\mathrm{m}^2}{\mathrm{m}^3}$	$200'000 \frac{m^2}{m^3}$	

Process Development

Micro-structured multichannel reactors

$V_R = 5 \text{ cm}^3$ Volume: **Pressure drop:** $\Delta p = 1$ bar

length: diameter: Number of channels: Specific surface: Flow velocity:

Mass flow:

L =	5.	cm
d =	100.	μm
N =	12,740.	
a =	40,000.	m²/m³
u =	0.63	m/s (H2O)
	35.	m/s (air)
Q _m =	225.	kg/h (H2O)
	15.	kg/h (air)

Typical time and length scale of chemical reactors

EPFU

-GRC

Mass transfer in heterogeneous catalysis

EPFU

Scales of Heterogeneous Solid Catalysts

(MSR: $5 \cdot 10^{-3} - 5 \cdot 10^{-2} \text{ cm}$)

Process Steps in Heterogeneous Catalytic Reactions

Steps during the course of the reaction

- External diffusion
- ② Internal diffusion
- ③ Adsorption on the active sites
- ④ Surface reaction forming the products
- ⑤ Desorption of the products
- ⁶ Internal diffusion
- \bigcirc External diffusion

Agar, 2003

(PFU

Internal mass transfer

- Internal mass transfer resistance can be reduced by
 - small particles

EPFU

- thin catalytic layers

Noble metal particles

Internal mass transfer

cat

- small particles
- thin catalytic layers

Internal mass transfer can be neglected for catalytic layers δ <20 μ m

Thiele-modulus

Weisz-modulus

internal mass transfer can be neglected, if

$$\psi = \frac{\delta_{cat}^2 \cdot r_{V,eff}}{D_{eff} \cdot c_{1,s}} < \begin{cases} 0.7; & n=0\\ 0.07; & n=1\\ 0.03; & n=2 \end{cases}$$

EPFL

Transport simultaneous with reaction: internal mass transfer within a spherical particle

EPFL

The concentration profile established in the particle depends on the ratio between the characteristic diffusion time t_D and the characteristic reaction time t_r

First order reaction

L is a characteristic length (the radius for the sphere particle), and D_e is effective diffusivity of a species A in the particle

Temperature control in catalytic wall reactors

Noble metal particles

Heat production near the channel wall;main resistance to heat transfer in the catalytic layer;

Near isothermal conditions, if

$$\frac{\left|\Delta H_{R}\right| \cdot r_{V,eff} \cdot \delta_{cat}^{2}}{\lambda_{cat} \cdot T_{w}} < 0.15 \frac{RT_{w}}{E_{a}}$$

Properties of Micro-Structured Reactors

- High surface area per reactor volume (beneficial for heat exchange)
- Short contact (reaction) time
- Internal (and external) mass transport of reactants can be neglected
- Negligible resistance to heat transport from the catalyst layer to the wall
- Low pressure drop as compared to a packed bed
- Suppression of danger of explosion

Use of MSR as a Tool in Catalysis

Determination of isothermal kinetic data A. Oxidative dehydrogenation of propane on VO_x catalysts

Oxidative Dehydrogenation of Propane (ODP)

Assembly of the micro-channel reactor

Channel dimension: 20 mm x 500 µm x 100 µm

inlet

Leibniz-Institut für Katalyse e.V. an der Universität Rostock Außenstelle Berlin

CFD simulation of temperature profiles for ODP in a single micro-channel (T = 773 K)

 $\Delta T < 1 K$

Heat conductivity of the wall = 15 W/m/sWall thickness: 125/150 µm

Isothermal condition within the channels when a reactor material is used with high heat conductivity and thick walls

Leibniz-Institut für Katalyse e.V. an der Universität Rostock Außenstelle Berlin

Comparison of a micro-structured and a packed-bed reactor

micro-structured wall reactor o packed-bed reactor

 $p_{C3H8} = 51,2 \text{ kPa}, P_{O2} = 25,6 \text{ kPa}, p_{ges} = 101,2 \text{ kPa}$

packed-bed reactor:

micro-structured wall reactor:

severe temperature gradients almost no temperature gradients

Reaction network in ODP reaction

Model 2	Reaction rate		
$C_3H_8 \rightarrow C_3H_6$	k ₁ р _{сзнв} [О]		
$C_3H_6 \rightarrow CO$	k ₂ р _{сзн6} [О]		
$C_3H_6 \rightarrow CO_2$	k ₃ р _{сзн6} [О]		
$C_3H_8 \rightarrow CO$	k ₄ р _{сзн8} [О]		
$C_3H_8 \rightarrow CO_2$	k ₅ р _{С3Н8} [О]		
$O_2 \rightarrow [O]$	k ₆ p _{O2} []		

Re-oxidation

atalysis

- $2 [] + O_2 \rightarrow 2 [O]$
- [O] lattice oxygen [] reduced VO_x-site

Leibniz-Institut für Katalyse e.V. an der Universität Rostock Außenstelle Berlin

Kinetic parameters (formation rates of C_3H_6 and $CO_x \propto [O]$)

	Reaction rate	k _{733 K} / mol kg ⁻¹ s ⁻¹ Pa ^{-b}	E _A / kJ mol⁻¹
$C_3H_8 \rightarrow C_3H_6$	k ₁ р _{сзнв} [О]	2.9·10 ⁻⁶	121
$C_3H_6 \rightarrow CO$	k ₂ р _{сзн6} [О]	9.7·10 ⁻⁶	102
$C_3H_6 \rightarrow CO_2$	k ₃ р _{сзн6} [О]	8.3·10 ⁻⁶	98
$C_3H_8 \rightarrow CO$	k ₄ р _{сзн8} [О]	$3.7 \cdot 10^{-7}$	155
$C_3H_8 \rightarrow CO_2$	k ₅ р _{сзн8} [О]	$3.2 \cdot 10^{-7}$	126
$O_2 \rightarrow [O]$	k ₆ p _{O2} []	$3.7 \cdot 10^{-6}$	87

Außenstelle Berlin

atalysis

Parity Plot (rates of formation of C_3H_6 and $CO_x \propto [O]$)

Open symbols: T = 693-796 K $C_3H_8/O_2/Ne$ 0.3/0.15/0.55 0.50/0.25/0.250.15/0.15/0.70

mole fractions calc. / -

atalysis

Leibniz-Institut für Katalyse e.V. an der Universität Rostock Außenstelle Berlin

Simulation of the lab-scale fixed-bed reactor

T _{Inlet}	ΔT	$X(C_3H_8)$	$X(O_2)$	$S(C_3H_6)$	S(CO)	S(CO ₂)
/ K	/ K	/ %	/%	/%	/%	/%
602	1	3.0	8.5	77	13	10
693	3	2.9	9.0	76	12	12
770	20	17.1	82.4	47	35	18
113	28	14.8	58.3	57	25	17

blue - simulated values

Leibniz-Institut für Katalyse e.V. an der Universität Rostock Außenstelle Berlin

Use of MSR as a Tool in Catalysis

Determination of isothermal kinetic data B. Ammonia oxidation on a thin Pt foil

Ammonia oxidation on Pt Temperature control during Reaction

Temperature-programmed reaction over: Pt foil in the Pt gauze in tubular reactor micro-structured reactor 50 100 NH₃:O₂=3:4.5 NH₃:O₂=3:3 NH³ conversion / vol⁶ 00 10 10 VH₃ conversion / vol% 40 | red Pt foil red. Pt 80gauze 60. ignition 40 250 ml/min 400 ml/min 101 kPa 20 101 kPa 3% NH₂ 3% NH₂ $4.5\% O_{2}$ $3\% O_{2}$ 100 200 300 400 500 600 700 200 300 400 500 600 100 T_{catalyst} / °C $_{\rm sandbed}$ / °C

poor heat transfer leads to ignition = loss of temperature control micro reactor provides temperature control up to 700°C

Surface reconstruction of thin-foil Pt catalyst

+ simple flat catalyst in optimal contact with the wall
 + fast catalyst exchange and protected thermocouple
 + short contact time (for fast reactions)

Atalysis

Leibniz-Institut für Katalyse e.V. an der Universität Rostock Außenstelle Berlin

Measured influence of temperature on rates of product formation

Applied CAt

N₂, N₂O, and NO are formed as products
 product formation increases with temperature
 NO formation requires T > 330°C

Measured influence of adding products NO and N₂O on rates of product formation

400 ml/min 101 kPa X < 11%TOS>14h 3 kPa NH₃ 3 kPa O₂

NO reduces rate of nitrogen formation, but increases it slightly for N₂O formation N₂O has hardly any influence on rate of product formation

FHI Ammonia oxidation on thin-film Pt catalyst Temperature-dependent surface reconstruction

SEM after reaction at:

atalysis

Leibniz-Institut für Katalyse e.V. an der Universität Rostock Außenstelle Berlin

Building models: Set of Reactions and Rate equations

simplified \rightarrow NH₃-s NH₃ adsorption $NH_3 + S$ reaction network \rightarrow NH₃ + s NH₃-s O_2 adsorption $0_{2} + 2s$ \rightarrow 20-s $\rightarrow 0_2 + 2s$ 2 O-s N_2 NH₃ activation NH_3 NH₃-s + ${}^{3}/_{2}$ O-s → N-s + ${}^{3}/_{2}$ H₂O + ${}^{3}/_{2}$ s r = k_i (NH₃-s) (O-s) N_2C H₂O formation NO N₂ formation 2 N-s $\rightarrow N_2 + 2 s$ $+ NH_3$ reactions **NO** formation N-s + O-s → NO-s + s **NO** desorption NO-s → NO+s \rightarrow NO-s adsorption NO + s $NO-s + N-s \rightarrow N_2O + 2s$ N₂O formation reactions

Mechanistic <u>indications</u> from kinetic fitting

- re-adsorption of NO must be considered
- decomposition of NO is not significant
- adsorption sites and reactions are consistent with literature on Pt(111)

- A kinetic model on pc Pt describes the formation of $N_2 and N_2O and NO$
 - The Pt surface is reconstructed already at mild conditions (374°C); this knowledge is essential for evaluation of kinetic data!

Conclusions

- Micro-structured reactors are suited for obtaining isothermal kinetic data
- A.) for simulation of catalytic fixed-bed reactor performance and
- B.) for deriving indications on possible reaction mechanisms

Use of MSR as a Tool in Catalysis

- Surface restructuring in ammonia oxidation on a Pt foil as catalyst at defined T (remember previous section)
- Identification of surface oxides of a Mo/V/W-O_x on silica catalyst by Laser-Raman spectroscopy

FHI In-situ Laser Raman Catalyst Characterization

- C₃H₆ oxidation by catalyst on carrier plate -

FHI

Laser-Raman Setup

FHI Propene oxidation / Experimental

Leibniz-Institut für Katalyse e.V. an der Universität Rostock Außenstelle Berlin

Propene oxidation (in-situ Laser-Raman cat.char.) FHI

Außenstelle Berlin

Use of MSR as a Tool in Applied Catalysis

A. Hydrogen-driven fuel cells
B. Partial oxidation of propene by H₂O in the vapor phase

Aspects of micro-structured reactor applications for mobile fuel cells

- choice of hydrogen carrier for hydrogendriven fuel cells
- for maximizing hydrogen selectivity in steam reforming of methanol, low temperatures are required for thermodynamic reasons
- coating of ceramic walls with catalytic material

Fueling fuel cells for mobile applications

Prototype reformer and PEMFC for a laptop from Casio, about 20 hr of operation. Hydrogen storage is not ideal for portable devices.

A liquid fuel (hydrogen-carrier) is stored and reformed to produce on-demand hydrogen for the fuel cell.

Which fuel should be used?

Kawamura et al., Chem. Eng. Sci. 61 1092 (2006)

university of new mexico

chemical & nuclea

engineering

Energy densities for various "hydrogen-carriers"

Volumes and weights of different fuels equivalent to 150Wh of stored energy* 600 ml

department of

chemical & nuclea engineering

Steam reforming of methanol

$CH_{3}OH + H_{2}O \longrightarrow 3H_{2} + CO_{2}$ $CO_{2} + H_{2} \longleftrightarrow CO + H_{2}O$

CO production must be minimized because it is a poison to the anode catalyst.

For a 20W fuel cell, assuming a liquid flow of 15ml/hr and 98% MeOH conversion approximately 4.8g of catalyst are needed.

department of chemical & nuclear engineering

Methanol Conversion for Different Fixed-Bed Reactor Dimensions

department of chemical & nuclear

engineering

Steam/Methanol = 1.1, T= 230°C, P = 640 Torr

Packed-bed reactors are far from isothermal

(Enthalpy of reforming reaction: ca. -41 kJ/mol)

Reactor: 1mm ID

 $U_0 = 0.26 \text{ m/s}$

W/F = 16 kg s/gmol

Methanol Conversion = 0.86

∆T is 20K for such a small-diameter reactor

chemical nuclear

department of chemical & nuclear engineering

Solution: micro channel reactors (ca. 500 to 100 μm)

Coating of micro-structured ceramic tubes

Gas-Assisted Fluid Displacement

department of chemical & nuclea

engineering

First, the fused-silica capillary is cleaned by etching, then rinsed with water and subsequently with ethanol; finally it is dried in air.

Afterwards, the capillary is filled with the coating fluid.

Purging the tube with air causes a thin film of liquid to be left behind

Wall coated reactor represents superior geometry

 530μ m capillary showing a dried 15μ m thick Cu/ZnO/Al₂O₃ catalyst coating.

Wall coated reactors are better than micro-packed bed reactors for catalyst incorporation:

- Inherently low pressure drop.
- Short diffusion/conduction lengths lead to isothermal operation.
- More stable and reliable than packed bed for longterm portable use.

university of new mexico

department of chemical & nuclear engineering

Radial Uniformity

department of chemical & nuclear engineering

Axial Uniformity

department of chemical & nuclear engineering

Multi-channeled structure fabrication

Fused-silica capillaries

1/4" OD stainless steel tube

Capillaries bundled and set with high T epoxy.

Capillary bundle inserted into s.s. housing and sealed with epoxy.

Ends cut with ceramic saw.

department of chemical & nuclear engineering

Multi-Channeled Structures

The channels are regularly spaced and the epoxy has filled in all of the voids between the tubes creating an air-tight seal. Transmitted-light optical microscope image of an un-coated M.R. with about 60 250μ m capillaries.

department of chemical & nuclear engineering

Micro-structured fuel-cell processor

M

Complete Microstructured Fuel Processor for Methanol Steam Reforming – (Running for 5 Days at Hannover Fair 2005)

Preferential oxidation of CO (PrOX) in a micro-structured reactor

Specifications:

- 53 microstructured plates
- Volume: 60 cm³
- Mass: 150 g
- 1.5 g Pt/Ru/Al₂O₃ catalyst
- coating thickness: 50 mm

Experimental conditions:

 simulated reformate gas: H₂/CO₂/H₂O/CO/O₂ = 56/ 18 / 10 /0.5/0.9 %

coolant gas: nitrogen

IChemE Chemistry Innovation KTN/Impact Award

TU/e award winner for TU/e-IMM development (Whitehall, London)

Delsman, E. R., de Croon, M. H. J. M., Kramer, G. J., Cobden, P. D., Hofman, C., Cominos, V., Schouten, J.C. *Chem. Eng. Sci.* **59** (2004) 4795-4802.

Cominos V., Hessel V., Hofmann C., Kolb G., Zapf R., Ziogas A., Delsman E.R., Schouten J.C. *Catal. Today* **110**, 1-2 (2005) 140-153.

Testing rig for the steam-reforming reaction in micro-structured reactors

Demonstration plant reactor consisting of micro-structured catalytic modules for epoxidation of propene to propene oxide by vapor-phase hydrogen peroxide

DEMIS Consortium:

Degussa, Uhde/Thyssen-Krupp,TU Chemnitz und Darmstadt, MPI-Mühlheim

Jas-phase epoxidation of propene by hydrogen peroxide to propene oxide

Microplant Composed of Various Modules

References:

M. Matlosz, W. Ehrfeld, J.P. Baselt (Eds.): Microreaction Technology; Springer, Heidelberg 2001

K. Jähnisch, V. Hessel, H. Löwe, M. Baerns: Chemistry in Microstructured Reactors; Angew. Chem. Int. Ed. **2004**, 43, 406-446

G. Markowz, S. Schirrmeister, J. Albrecht, F. Becker, R. Schütte, K.J. Caspary, E. Klemm: Microstructured Reactors for Heterogenously Catalyzed Gas-Phase Reactions on an Industrial Scale; Chem. Engng. & Techn. **28**, no.4, 459-464 (2005)

L. Kiwi-Minsker, A. Renken: Microstructured Reactors for Catalytic Reactions; Catal. Today **110**, issues 1-2, 2-14 (2005)