Modern Methods in Heterogeneous Catalysis Research

Thermal analysis methods

Rolf Jentoft

03.11.06

Outline

- Definition and overview
- Thermal Gravimetric analysis
- Evolved gas analysis (calibration)
- Differential Thermal Analysis/DSC
- Kinetics introduction
- Data analysis examples

Definition

Thermal analysis:

the measurement of some physical parameter of a system as a function of temperature.

Usually measured as a dynamic function of temperature.

Types of thermal analysis

- TG (Thermogravimetric) analysis: weight
- DTA (Differential Thermal Analysis): temperature
- DSC (Differential Scanning Calorimetry): temperature
- DIL (Dilatometry): length
- TMA (Thermo Mechanical Analysis): length (with strain)
- DMA (Dynamic-Mechanical Analysis): length (dynamic)
- DEA (Dielectric Analysis): conductivity
- Thermo Microscopy: image
- Combined methods

Thermogravimetric

Developed by Honda in 1915

Oven heated at controlled rate

Temperature and Weight are recorded

Types of thermal analysis

- TG (Thermogravimetric) analysis: weight
- DTA (Differential Thermal Analysis): temperature
- DSC (Differential Scanning Calorimetry): temperature
- DIL (Dilatometry): length
- TMA (Thermo Mechanical Analysis): length (with strain)
- DMA (Dynamic-Mechanical Analysis): length (dynamic)
- DEA (Dielectric Analysis): conductivity
- Thermo Microscopy: image
- Combined methods

DTA/DSC

First introduced by Le Chatelier in 1887, perfected by Roberts-Austen 1899

Oven heated at controlled rate

Temperature and temperature difference are recorded

Types of thermal analysis

- TG (Thermogravimetric) analysis: weight
- DTA (Differential Thermal Analysis): temperature
- DSC (Differential Scanning Calorimetry): temperature
- DIL (Dilatometry): length
- TMA (Thermo Mechanical Analysis): length (with strain)
- DMA (Dynamic-Mechanical Analysis): length (dynamic)
- DEA (Dielectric Analysis): conductivity
- Thermo Microscopy: image
- Combined methods

Dilotometry (DIL)

Dilometry: change in length with temperature

DIL of "Green" and Sintered Yttria-stabilized Zirconia

TMA and DMA

DMA of polyester fiber

Glass transition starts at 75°C. The storage modulus decreased from approx. 4,200 MPa to 200 MPa. E' is storage modulus E" is loss modulus δ is the phase lag

Types of thermal analysis

- TG (Thermogravimetric) analysis: weight
- DTA (Differential Thermal Analysis): temperature
- DSC (Differential Scanning Calorimetry): temperature
- DIL (Dilatometry): length
- TMA (Thermo Mechanical Analysis): length (with strain)
- DMA (Dynamic-Mechanical Analysis): length (dynamic)
- DEA (Dielectric Analysis): conductivity
- Thermo Microscopy: image
- Combined methods

Dielectric analysis

Change in conductivity with temperature

Types of thermal analysis

- TG (Thermogravimetric) analysis: weight
- DTA (Differential Thermal Analysis): temperature
- DSC (Differential Scanning Calorimetry): temperature
- DIL (Dilatometry): length
- TMA (Thermo Mechanical Analysis): length (with strain)
- DMA (Dynamic-Mechanical Analysis): length (dynamic)
- DEA (Dielectric Analysis): conductivity
- Thermo Microscopy: image
- Combined methods

Sintering of W 1600-2700 °C

Abb. 7.6. Heizkammer 1750 au Mikroskopobjekttisch. Für An beiten in Gasatmosphäre ode unter Vakuum. (Photo: Fa. Leitz

TGA with Optical Window

FIG. 2. Detail showing the TGA furnace, its side tube, and the optical window that allows direct observation of reacting particles placed in the sample pan.

Matzakos and Zygourakisa Rev. Sci. Instrum. 64 (6), June 1993, 1541-48

TG analysis

TG curve

Information obtained depends on procedure Not fundamental property

TG analysis: uses

- 1) Thermal decomposition of substances (calcination and heat treatment and polymer stability)
- 2) Corrosion of metals
- 3) Determination of moisture, volatiles, and ash content
- 4) Evaporation rates and sublimation
- 5) Distillation and evaporation of liquids
- 6) Reaction kinetics studies
- 7) Compound identification
- 8) Heats of vaporization and vapor pressure determinations

TG curve: Instrumental effects Furnace heating rate

14.8 mg; dynamic He atmosphere at 150 ml/min.

TG curve: Instrumental effects

Furnace gas atmosphere

TG curve: Instrumental effects

Furnace gas atmosphere

 $\begin{array}{l} CaC_2O_4.H_2O(s) \bigstar CaC_2O_4(s) + H2O(g) \\ CaC_2O_4(s) \bigstar CaCO_3(s) + CO(g)(in N_2) \\ CaC_2O_4(s) + \frac{1}{2}O_2(g) \bigstar CaCO_3(s) + CO_2(g)(in O_2) \\ CaCO_3(s) \bigstar CaO + CO_2(g) \end{array}$

TG curve: Instrumental effects

Furnace configuration

Dehydration of CaC₂O₄.H₂O, (dashed line, single crystal)

TG curve: Instrumental effects Correction file

Measurements may have a significant change in weight due to changes in gas density and viscosity

TG curve: Sample effects Crucible type

Mass transport by flow ($\triangle P$) and diffusion ($\triangle C$)

A (solid)
$$\rightarrow$$
 B (solid) + C (gas)
A (solid) + B (gas) \rightarrow C (solid)
A (solid) + B (gas) \rightarrow C (solid) + D (gas)

- •Thin layer vs. Large amount of sample
- •Detection limit vs. Diffusion limitation
- •Self generated atmosphere

TG curve: Sample effects

Thermal conductivity and particle size

Large particles and low thermal conductivity can effect results

TG curve: Sample effects Diffusion limitation

Evolved gas analysis

- •Single thermal analysis method may not be sufficient to understand changes in sample
- •Control of gas phase requires analysis of gas phase
- •Mass spectrometry and Infra-red analysis
- •Transfer of gas to analytical instrument
- •Calibration of the gas analysis technique

Evolved gas analysis: Pulse Calibration

Thermal analysis: crucibles

The best type of crucibles are disposable crucibles

Crucible selection criteria (size and material):

Temperature range Chemical compatibility Detection limits Gas exchange characteristics

Crucible cleaning

Mechanical cleaning not recommended

Thermal analysis: crucibles

Calibration substance Crucible material	Cyclopentane	Water	Gallium	Indium	Tin	Lead	Zinc	Lithium sulfate	Aluminum	Silver	Gold
Corundum, Al ₂ O ₃			+	+	+	+	+				
Boron nitride, BN			+	+	+		-		+	+	+
Graphite, C			+	+	+	1	- T	+	+	f	?
Silicate glass	+	+	+	+	+	+	+	+	+	+	-
Quartz glass, SiO ₂	+	+	+	÷.	-		1	+	-	×	×
Aluminum, Al	+					+	+	+		+	+
Aluminum, oxidized	+	+	+	- T	-	+	-	+	×	×	×
Silver, Ag	+	+	1	Ŧ	+	+	+	+	×	×	×
Gold, Au	+		-	-	-	-	-	?	-	×	×
Nickel, Ni	+	-	•		-			+	-	-	×
Iron Fe	-	т	•		•	•		?	-	+	-
Stainless steel	- -		•	+		+	-	?	-	+	-
Platinum Dt	Ŧ	+	•	+	•	+	-	?	-	+	-
Molybdonum Mo	+	+		1.00	-		-	+	-	-	_
Tantaham Ta	+	+	•	?	•	?	•	. ?	?	?	-
Tantalum, Ta	+	+	?	+	?	?	?	+		+	-
Tungsten, W			•	?	?		+	?		+	+

Table 4.8 Compatibility between calibration substances and crucible materials (according to Cammenga et al., 1993)

+ : No solubility and influence on melting temperature to be expected.

- : Melt dissolves crucible material, greater change of melting temperature.

• : Partial solution processes possible with negligible change of melting temperature.

 \times : Crucible melts.

? : Compatibility unknown.

□: Combination cannot be realized.

DTA/DSC

Measure temperature difference between sample and reference while they are being heated. Measure difference in heat flow to sample and reference while they are being heated.

DSC

Heat flux DSC

Power compensating DSC

Heat flows through disk
Temperature of disk measured
Heat transfer through disk greater than through gas phase

- •Each sample has own heater
- •Temperature of samples controlled independently
- •Less power required with endotherm

Abb. 5.17

DTA/DSC :Reference

Reference should have same physical properties as sample

Reference should not have any transformations during heating

Reference for sample which looses weight?

Commonly used, SiC, Al₂O₃, empty crucible

DTA/DSC: Temperatures

Temperature of oven, reference and sample during measurement

Heat integration

Curing a epoxy resin, Simple linear baseline

Heat integration

TG analysis: combined methods

Thermal analysis methods are more powerful when combined

Analysis Methodology

VxOy Characterization

V_xO_y Nanoparticles

- Model catalyst for partial oxidation of butane
 - Alkoxide/benzyl alcohol route*
- Catalytic properties
 - At 473 K mainly acetic acid

(C-C bond clevage)

- At 573 and 673 K mainly malaic anhydride (oxidation)
- Previous knowledge
 - From EELS and XPS V oxidized from mix of V⁺³ and V⁺⁴ to V⁺⁴ and V⁺⁵

N. Pinna, M. Antoneitti, M. Niederberger, Colloids Surf. A 250 (2004) 211.

V_xO_y Nanoparticles

- From TEM, EELS, and XPS vanadium is oxidized from V⁺³ and V⁺⁴ to V⁺⁴ and V⁺⁵
- What causes the change in selectivity?
- What can TGMS tell us about the material?
- Only several milligrams of material available!

TGMS of V_xO_y particles

Conditions: 21 % oxygen, 5 K/min to 773K

TGMS of $V_x O_y$ particles

- Calibrate MS:
 - H₂O (CuSO₄*4H₂O)
 - CO₂ (pulse valve)
- First M/e 18: 0.94mg

- Dehydration and combustion (assume C:H = 1:1) = 1.92 mg
- Weight loss of only 1.77mg suggests simultaneous reoxidation
- Prolonged re-oxidation produces V₂O₅: basis for valence calculation of 4.5 at 340°C.

References

G.W.H. Höhne, W.F. Hemminger, H.-J. Flammersheim, *Differential Scanning Calorimetry*, Second edition, Springer, Berlin, 2003

W.W. Wendlandt, *Thermal Methods of Analysis*, John Wiley & Sons, New York, 1974

W.F. Hemminger, H.K. Cammenga, *Methoden der Thermischen Analyse*, Springer-Verlag, Berlin, 1989

T. H. Gouw, *Guide to Modern Methods of Instrumental Analysis*, Wiley-Interscinece, New York, 1972

H.H. Willard, L.L. Merritt, Jr., J.A. Dean, F.A. Settle, Jr. *Instrumental Methonds of Analysis, 7th edition*, Wadsworth, Belmont, 1988

Acknowledgement for Examples

Fritz-Haber-Institute of the MPG, Department of Inorganic Chemistry

Robert Schlögl Annette Trunschke Michael Hävecker Dangsheng Su Di Wang Klaus Weiss Ute Wild Juan Delgado (diffusion limited combustion example)

Max Planck Institute for Colloids and Interfaces

Markus Antonietti Matthijs Groenewolt Nicola Pinna Markus Niederberger

Ice Calorimeter by Lavoisier

