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Acronyms

EXAFS – Extended X-ray Absorption Fine Structure

XAS – X-ray Absorption Spectroscopy

XAFS – X-ray Absorption Fine Structure

XANES - X-ray Absorption Near Edge Structure

NEXAFS- Near-Edge X-ray Absorption Fine Structure
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Why X-ray Absorption Spectroscopy 
for Catalyst Characterization? 

• Photons sufficiently 
penetrating that absorption 
by reaction gas is minimal.

In situ!
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Can probe the catalyst structure under reaction conditions!Can probe the catalyst structure under reaction conditions!
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Why are we Interested in XAFS?
XAFS gives detailed element-specific
information on oxidation state and local atomic 
structure.
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Chloroplatinic acid 
complex on Al2O3

10-15 Å Pt clusters 
on Al2O3
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XANES

EXAFS

X-ray absorption fine structure is the modulation of the x-ray 
absorption coefficient (μ) at energies near and above an x-ray 
absorption edge.
Commonly broken into two regimes:

– XANES    X-ray absorption near edge structure
– EXAFS Extended x-ray absorption fine structure
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Ni K-edge XAFS of Ni metal

What is XAFS?

1 keV



X-ray Absorption Near Edge 
Structure (XANES)

Provides quantitative information on:
– Average oxidation state
– Local coordination environment
– Electronic structure (empty density of 

states)

Chemistry!



Provides quantitative information on:
– Distance to neighboring atoms (average bond 

length, Rj)
– Coordination number and type of the neighboring 

atoms (Nj)
– Mean-square disorder of neighboring atoms (σj

2)

Extended X-ray Absorption Fine Structure 
(EXAFS)



X-ray Absorption

X-rays are absorbed by all matter through the 
photo-electric effect.

An x-ray is absorbed by an atom 
when the energy of the x-ray is 
transferred to a core-level 
electron (K, L or M shell) which 
is ejected from the atom.
The atom is left in an excited 
state with an empty electronic 
level (a core hole). Any excess 
energy from the x-ray is given to 
the ejected photo-electron.
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Absorption Edges: Nomenclature

Absorption edge Core level 
K 1s 
LI 2s 
LII 2p1/2 

LIII 2p3/2 
MI 3s 
MII 3p1/2 

MIII 3p3/2 
MIV 3d3/2 
MV 3d5/2 
 

Page 10



X-ray Fluorescence
When x-rays are absorbed via photo-electric effect, the 
excited core-hole will relax back to a ground state of 
the atom. A higher level core electron drops into core 
hole and a fluorescent x-ray (or Auger electron) is 
emitted.

X-ray Fluorescence: An x-ray with 
energy equal to the difference in core-
levels is emitted.

XRF occurs at discrete energies that are 
characteristic of the absorbing atom, and 
can be used to identify the absorbing 
atom.
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The X-ray Absorption Coefficient: μ

Intensity of x-ray beam passing through a material of 
thickness x is given by the absorption coefficient μ:

It = I0e-μx

x

I0 It

Where I0 is the x-ray intensity impinging on the material and It is the 
intensity transmitted through the material.

Page 12



The X-ray Absorption Coefficient: μ
μ has sharp absorption edges corresponding to the 
characteristic core-level energies of the atom.
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XAFS region3

4

AE
Zρμ ≈

μ depends strongly on x-ray 
energy E and atomic number 
Z, and on the density ρ, and 
atomic mass A:



X-ray Absorption Spectroscopy
XAS measures the energy dependence of the x-ray absorption 
coefficient μ(E) above the absorption edge of a particular element. 
μ(E) is measured in one of two ways:

– Transmission: the absorption is measured by detecting the 
transmitted x-ray flux through the sample:

I = I0e-μ(E)x

μ(E)x = ln(I/I0)

– Fluorescence: the refilling of the deep core hole is detected. Usually 
the fluorescent x-ray is measured:

μ(E) ∝ If/I0
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XAFS vs. XRD
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XAFS
Can be used for in situ structure determination: photon-in / photon-
out.  
Elementally specific: information around each element in multi-
element catalyst can be determined separately.
X-ray absorption is a bulk technique - but if the element of interest if 
highly dispersed then majority of atoms are surface atoms.
Local order only: due to inelastic mean free path XAFS only probes 
local order (5-6 Å).
All elements (except hydrogen).
Sensitivity: bulk compounds to sub ppm.
All phases can be studied: solids - both crystalline and amorphous, 
liquids and gases.
Spatial information - with specialized experiments.
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Ba2TiO4

K2TiSi3O9

Both Ti4+

XANES: Local Coordination 
Environment

Ba2TiO4

K2TiSi3O9

• Ti K-edge XANES shows dramatic dependence on 
the local coordination chemistry.
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XANES: Oxidation State

MnO Mn2O3 MnO2
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• Many edges of many elements show significant, easily measurable, edge 
shifts (binding energy shifts) with oxidation state.

• First observation was by Berengren for phosphorus in 1920*!
*See “A history of X-ray absorption fine structure”, R. Stumm von Bordwehr, Ann. Phys. Fr. 14 (1989) 377-466)
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Elements of an XAFS Experiment

X-ray 
source

Beam line

X-ray 
detectors

Sample
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X-ray Source: Synchrotron
Electrons at near relativistic energies are confined to a circular orbit 
by a series of bending magnets and straight sections. As electrons are 
deflected through a magnetic field they give off electromagnetic
radiation. 
Synchrotron light:

- Tunable
- High Intensity 
- Collimated
- Polarized
- Time structure
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Synchrotron Radiation
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XAS Accessible Elements
K-edge EXAFS

L3-edge EXAFS

L3/K-edge EXAFS

All elements with Z>18 (Ar) have a 
K or L-edge in the range 3-35 keV



X-ray Source: Synchrotron
Typical layout of sector of a synchrotron source (Advanced Photon 
Source, Argonne National Laboratory)
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Bending Magnets

Continuous source of radiation
Spatially broad
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Undulator

Undulator tuned by varying 
the magnetic gap
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“Laser-like”
radiation



Beamline
Used to “transport” and condition the synchrotron 
radiation for the XAFS experiment.
Slits, mirrors, monochromator, shutter – similar to any 
other electromagnetic radiation source e.g. FTIR – only on 
a larger scale.
Slits used to define beam size.
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X-ray Mirrors
Glancing incidence needed for reflectivity in x-ray energy range.
Ultra-smooth surfaces needed (<1nm rms roughness).
Small angles mean mirrors need to be long.
Mirrors used to collimate and focus the beam by bending.
Also used for harmonic rejection.
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Monochromator
Used to select energy (wavelength) of interest.
Must be able to scan the energy for XAFS.
Must be very stable.

θ

Si double crystal monochromator –
energy scanned by rotating θ

White beam impinges on 
perfect single crystal of Si 
of specific orientation.
Photons that meet the 
Bragg diffraction 
condition nλ = 2dhklsin(θ) 
are diffracted.
Second crystal simply 
redirects the beam 
parallel to incident beam.
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Si(111) crystal



Monochromator
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Detectors: Ionization chamber
Used for transmission experiments
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e-

ions

electrons

x-rays

x-ray 
transparent 
window

-ve high voltage bias

gas enclosure Photon is absorbed by gas atom (He, N2, Ar -
dependent on energy)

Photoelectrons emitted (ionization)

These electron initiate more ionization

High voltage bias across plates causes electron 
and ions to drift in opposite directions.

Charges collected result in current flow which is 
proportional to the incident x-ray intensity

I0 It

samplemonochromator
slits

Typical values: at 10 keV, Gamp = 1x108 V/A, 
measuring 1V  means 2 x 108 photons/s

I to V 
amplifier



Detectors: Fluorescence 

Multi-element solid state (Si or Ge) detector
Measures charge from individual photon rather than 
average
Small solid angle
Energy resolution 200-300 eV
Individual element limited to 105 counts/s
Dead-time correction important

Used for low 
concentration of element 

(<0.5 wt%)

I0

samplemonochromator
slits

fluorescence 
detector
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The Sample 
“For transmission measurements the ideal sample is 
uniform and has a thickness of ~2 absorption lengths. 
It should be free of pinholes (areas of high x-ray 
transmission). If a powder the grains should be very 
fine (<< absorption length) and uniform”

If sample too thick most 
photons do not get through

If sample too thin most 
photons do not interact

Ideal: μ ~ 2-3
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The Sample: Absorption Length
Absorption length should always be calculated before 
beginning an XAFS measurement.

– Absorption length = 1/μ
(distance over which x-ray intensity drops by 1/e = 37%).

– For single substance μ = ρ.σ
• Where ρ = density (g/cm3) and σ = cross section (cm2/g)

– For multi-element substance:

• Where ρM is the density, mi/M is the mass fraction of element i

i
i

i
M M

m σρμ ∑=
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The Sample: Absorption Length
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The Sample
Use as homogeneous (uniform) sample as possible: 
logarithms do not add!
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Fluorescence detection measurements have fewer 
requirement on the sample. Usually used for dilute 
samples.



In situ XAFS Measurements
Key strength of the technique.
Ability to probe the local atomic and geometric 
structure of the catalyst under reaction conditions.
Need some type of reaction vessel that holds the 
sample that is compatible both with the 
spectroscopy and with the catalysis.
Many, many different designs in the literature.
Many factors to consider: temperature, pressure, 
transmission, fluorescence, x-ray energy, form of 
catalyst, etc.
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In situ cell
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Important Considerations
Monochromatic x-rays: need x-rays with small energy 
spread ΔE ~1 eV at 10 keV
Linear Detectors: the XAFS signal is small, so lots of 
photons needed and detectors that are linear in x-ray 
intensity
Well-aligned Beam: the x-ray beam hitting the detectors 
should be the same as that hitting the detectors
Homogeneous Sample: uniform and of appropriate 
thickness, free of pinholes
Counting Statistics: good μ(E) data should have a noise level 
of ~10-3, so need to collect at least 106 photons

Page 38



XAFS in Practice
We are interested in the energy dependent oscillations μ(E) as these 
tell us something about the neighboring atoms, so we define EXAFS 
as:
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The “bare atom” background μ0(E) is subtracted from the spectrum, 
and divided by the “edge step” Δu0(E) to give the EXAFS oscillations 
normalized to one absorption event:



EXAFS: χ(k)
XAFS is an interference effect that depends on the wave nature of 
the photoelectron. It is therefore convenient to think of XAFS in 
terms of the photoelectron wavenumber, k, rather than x-ray 
energy:

2
0 )(2 EEmk −

=

χ(k) is often weighted (multiplied) by k2 or k3 to amplify the 
oscillations at high-k
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EXAFS: An interference effect
Photoelectron waves either constructively or destructively 
interfere, giving rise to oscillation in the amplitude.

EXAFS spectrum comprised of a series of sine waves of 
different amplitude representative of the different 
scattering paths undertaken by the photoelectron wave.
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Fourier Transform
One way to separate the sine waves from one another is to 
perform a Fourier transform.
The resulting magnitude of the transform now has peaks 
representative of the different scattering paths of the 
photoelectron.
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1st scattering path in Fe metal

8 nearest neighboring Fe 
atoms at 2.49 Å

Single scattering path

“1st shell”

Scattering Paths: Fe metal
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2nd scattering path in Fe metal

Scattering Paths: Fe metal

6 nearest neighboring Fe 
atoms at 2.87 Å

Single scattering path

“2nd shell”



Scattering Paths: Fe metal
3rd scattering path in Fe metal

3-legged scattering path: 24 similar paths at this 
distance but small amplitude. Most multiple-scattering 
paths are weak – except co-linear paths!
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5th scattering path in Fe metal

12 nearest neighboring 
Fe atoms at 4.06 Å

Single scattering path

“3rd shell”

Scattering Paths: Fe metal



Scattering Paths: Fe metal
8 Fe atoms at 4.97 Å

Single scattering path

“5th shell”
Co-linear multiple 

scattering paths are larger 
than the single scattering 

path!

Multiple scattering 
paths



In reality…..

In previous example we knew the structure and were 
able to determine the individual scattering paths.

In a “real” situation we have the EXAFS data and wish 
to determine the scattering paths in order to determine 
the local structure around the element of interest in the 
catalyst.

Therefore we have to fit the experimental spectrum 
with scattering paths from a model.
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The EXAFS Equation: simple description
Absorbing atom

Outgoing 
photoelectron

Scattering atom

Scattered 
photoelectron

With a spherical wave eikR/kR for the propagating photoelectron, and 
a scattering atom at a distance R, we get:

( )( ) 2 ( ) . .
ikR ikR

i ke ek kf k e C C
kR kR

δχ ⎡ ⎤= +⎣ ⎦

Where the neighboring atom gives the amplitude f(k) and phase shift 
δ(k) to the scattered photoelectron
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The EXAFS Equation: simple description

[ ]2

( )( ) sin 2 ( )f kk kR k
kR

χ δ= +

[ ]
2 22

2

( )( ) sin 2 ( )
kNf k ek kR k

kR

σ

χ δ
−

= +

Combining the terms (including the complex conjugate) we get:

for one scattering atom.
For N scattering atoms, and the thermal and static disorder of σ2, 
resulting in the mean-square disorder in R, we get:

A real system will have neighboring atoms at different distances and 
of different types. If these are added we get:

[ ]
2 22

2

( )( ) sin 2 ( )
ik

i i
i i

i i

N f k ek kR k
kR

σ

χ δ
−

= +∑
Page 50



The EXAFS Equation
2 2( 2 ) ( 2 / ( ))2

0 2

( )
( ) sin(2 2 )i ii k R k

i i i i
i i

f k
k S N e e kR

kR
σ λχ δ ϕ− −= + +∑

Ni is the number of scattering atoms of type i

Ri is the distance from the central atom to the scattering atom
is the amplitude reduction factor (due to multielectron processes). 
is a term to account for the disorder in the position of the atoms. 
is a damping factor to account for the fact that the photoelectron wave is 
only scattered elastically over a short distance.

fi(k) is the scattering amplitude at atom i

δi is the phase shift undergone by the photoelectron at the central atom

ϕi is the phase shift undergone by the photoelectron when it bounces off the 
scattering atom

2 2( 2 )i ke σ−

( 2 / ( ))iR ke λ−

2
0S

Page 51



The EXAFS Equation

The scattering amplitude
The phase shift

these depend on the atomic 
number of the scattering atom so 
we can determine the species of 

the neighboring atom
}

2 2( 2 ) ( 2 / ( ))2
0 2

( )
( ) sin(2 2 )i ii k R k

i i i i
i i

f k
k S N e e kR

kR
σ λχ δ ϕ− −= + +∑

The mean free path, λ, 
depends on k, but in EXAFS 
k-range, λ<25Å
1/R2 term

} these terms make EXAFS a local 
probe (short range order)
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The EXAFS Equation
)()( kk

i
i∑= χχ

( )2
2 2

2
0 2( ) Im exp( (2 )

( )
exp( 2 )e( )

( )
xpi

i
i

i
i

ii
i

Rk i kR k
F

R
k

k

S

k

kN
ϕ

λ
σχ

⎛ ⎞⎛ ⎞−⎜ ⎟= + − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
0iR RR= + Δ
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The measured EXAFS is a sum of 
all of the individual scattering paths

0
2 2 ( ) /ek m E E= −

Theoretically calculated values:
Fi(k) effective scattering amplitude
ϕi(k) effective scattering phase shift
λ(k) mean free path
Starting Values:
R0

Parameters determined in fit:
Ni degeneracy of path
S0

2 passive electron reduction factor

σi
2 mean square displacement

E0 energy shift

ΔR change in path length



EXAFS Analysis

Collect raw 
data

Subtract 
pre-edge & 
normalize

Remove 
smooth μ0(E) 
background

Apply k-
weight to the 

data

Fourier 
Transform

Develop a 
model

Calculate 
scattering 

amplitude and 
phase shift

Use these to 
refine R, N and 

σ2 to data

Final 
parameters
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Examples of Application of XAFS to 
Catalyst Characterization

XANES
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What Is XANES?
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(X-ray absorption spectrum of Ti K-edge of Ba2TiO4)

XANES= Pre-edge + Edge + XANES
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XANES Transitions
• XANES directly probes the angular momentum of the 

unoccupied electronic states: these may be bound or unbound, 
discrete or broad, atomic or molecular.

• Dipole selection rules apply*: Δl = ±1, Δj = ±1, Δs = 0.

• Primary transition will be:

• s → p for K (1s core electron) and L1 (2s core electron 
initial state) edges

• p → d for L2 (2p½) and L3 (2p3/2) edges 

• But…..final state usually not atomic-like and may have 
mixing (hybridization) with other orbitals. This is often the 
interesting part of the XANES!

* Some transitions are true quadrupolar transitions. These are usually very weak.

Page 57l=0 is s-orbital; l=1 is p-orbital; l=2 is d-orbital



XANES Interpretation
• The EXAFS equation breaks down at low-k, which complicates 

XANES interpretation.

• We do not have a simple equation for XANES.

XANES can be described qualitatively (and nearly quantitatively) in terms of:

coordination chemistry regular, distorted octahedral, tetrahedral…

molecular orbitals p-d hybridization, crystal field theory

band structure the density of available occupied electronic states

multiple scattering multiple bounces of the photoelectron

• These chemical and physical interpretations are all related:

What electronic states can the photoelectron fill?

Page 58



Advantages of XANES vs. EXAFS
• Spectra simpler to measure than EXAFS: features intense, concentrated 

in small energy region. 

• Weak temperature dependence (Debye-Waller), so spectra can be 
recorded at reaction temperature (in situ): 

• Exp(-2k2σ2) = exp(-2(0.5)2 x 0.005)  ~ 1
• Faster to measure than full spectrum: <msec demonstrated. 

• Sensitive to chemical information: valence, charge transfer.

• Probes unoccupied electronic states: important in chemistry.

• Often used as simple “fingerprint” to identify presence of a particular 
chemical species.

• Beamlines with micro-probe capabilities can also scan energy and obtain 
XANES spectra with elemental distribution. 
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XANES Analysis: Oxidation State
Many, many examples in the literature…...

Mo K-edge
V K-edge

Ref: Wong et al., Phys Rev. B 30 (1984) 5596

Re L3-edge

Ref: Cramer et al., JACS, 98 (1976) 1287
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XANES Analysis: Oxidation State
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Mo K-edge XANES of Mo oxides

• Linear fit of Mo valence with K-edge position only 
obtained using a feature above the absorption edge!

T. Ressler et al. J. Cat 210 (2002) 67
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Metal K-edge XANES

• Intense edge absorption due to dipole allowed s → p transition (Δl = ±1).

• Weaker pre-edge feature results from mixing of 3d-4p orbitals of suitable 
symmetry (or from quadrupolar allowed transition ~2 orders magnitude 
weaker).
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s→ d

Molybdenum Oxides

(NH4)6Mo7O24

Distorted octahedral 
coordination 

Na2MoO4

Tetrahedral 
coordination 

Mo K-edge XANES

• Both nominally +6 oxidation state, but distinctly different XANES spectra.

• Slight edge shift – different degree of covalency of the Mo.

• Pre-edge peak more intense for tetrahedral coordination compared to 
distorted octahedral.
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Transition Metal K-edge Pre-edge 
Peaks

Pure octahedral case

Centro-symmetric: no p-d mixing allowed; 
only quadrupolar transitions – very low 
intensity

Distortion from octahedral

p-d mixing allowed: dipole transition in pre-
edge – increasingly larger intensity.

Pure tetrahedral

Largest pre-edge intensity.
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Ti K-edge XANES: Reference Compounds

E0 = 4966.0 eV

Anatase - 6 coordinate

Fresnoite -
5 coordinate

Barium 
orthotitanate -
4 coordinate

1s → 3d

• Symmetry around absorbing atom strongly affects pre-edge transition: 
ability to differentiate 4, 5, 6-fold coordination.

Local Site Symmetry in Ti-containing Compounds

Anatase

• 3d split by mixing 
with O2p into t2g and 
eg like orbitals.

• 3rd peak is 
quadrupolar in 
nature
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• Correlation between absolute position and peak height of pre-edge 
peak: all 4-fold, 5-fold and 6-fold coordinated Ti compounds fall into 
separate domains.

• Ability to distinguish Ti coordination from pre-edge peak information.

Reference: Farges et al., Geochim. 
Cosmochim. 60 (1996) 3023 
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Ligand-Metal Binding from Ligand 
K-edge XANES

• Provides direct experimental 
measurement of the ligand 3p 
character in the highest 
occupied molecular orbital 
(HOMO).

• Allows study of “spectator”
ligand effects.
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Ligand-Metal Binding: Cl K-edge XANES
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 K2PtCl6,  Potass ium hexachloroplatinum(IV ) chloride

 Pt(NH3)Cl4, c is-diamminetetrachlorplatinum(IV )

 Pt(NH3)Cl4, trans-diamminetetrachlorplatinum(IV )

 
 PtCl2, Platinum(II) chloride
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• Position of the ligand pre-edge peak depends primarily on the d manifold 
energy (metal oxidation state). Compounds with d-band closest to the Cl 3p 
energy have strongest M-Cl bonding, and highest covalency.

• In Pt(NH3)3Cl2 there is no direct M-Cl bonding: Cl is a “spectator” ligand – so 
no pre-edge peak.

Page 68



Chlorine K-edge XANES of Pt/γ-Al2O3

Reduction of Pt from Pt4+ → Pt2+ → Pt0 with loss of 
Pt-Cl bonds.
Total loss of Pt-Cl bonding by 250ºC.
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• Use Cl K-edge 
XANES as in situ 
diagnostic tool for 
presence of Pt-Cl 
bonding.
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“White Line” Intensity: Oxides
Re L3-edge - Transition from 2p3/2 to 5d states.

Re metal (Re0) - 5d5

ReO2 (Re4+) - 5d1

NH4ReO4 (Re7+) - 5d0

• Intensity of Re L3 white line probes Re LDOS
*Note - Spectra aligned in energy
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L3

L2

• Significant difference in L3 and L2 edge XANES: 2p to 5d transitions.

•Pt 5d3/2 filled, so no white 
line.Note - L2 shifted to align with L3 edge.

EF
5d5/2

5d3/2

L3 L2

2p1/2
2p3/2

•Same l=2 final density of states but because of selection rule,  Δj = ±1, 
different total quantum number probed.

•Only j=3/2 probed by L2-edge, both j = 3/2 and j =5/2 probed by L3-edge.

Pt L3 and L2 Edge XANES
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• Transition is 2p to 5d: Pt d-band full, so “no” intensity at edge.
• PtGe intermetallics: charge transfer from d-band of Pt to Ge, resulting in 

significant intensity at edge.
• Use as signature of Pt-Ge intermetallic formation.

XANES to Probe Charge Transfer in 
Alloys: PtGe
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Increasing Ge content
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XANES to Probe Charge Transfer in 
Alloys: PtGe/γ-Al2O3 catalysts
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• Pt in the reduced catalyst is primarily present as a Pt3Ge2
alloy cluster



Effect of Adsorbed Molecules on 
XANES of Dispersed Metal Clusters

Have to be careful and consistent as to how your data 
are collected.
Is there hydrogen (or any other molecule) adsorbed on 
the metal cluster?
If there is then the “chemistry” of the metal-adsorbed 
molecule could affect the XANES.
Combination of ab initio theory and (high resolution) 
XANES potential powerful tool for determining 
adsorption site.
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Effect of Adsorbed Hydrogen on Pt L3 XANES

• White-line intensity decreases 
and spectra broaden to higher 
energies as H is added.

• Difference signal typically leads 
to broad structure ~8 eV above 
absorption edge.

• Several different interpretations 
in the literature.
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Increasing H coverage
10-15Å Pt clusters 
supported on Al2O3
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Adsorption Sites by XANES

J. Phys. Chem. B110 (2006) 16162 Page 76

Combination of high resolution XAFS and FEFF8.2 
reveals adsorption site for CO in Pt catalysts

5wt% Pt/γ-Al2O3

He

He/O2

1% CO

High 
Resolution

• Best agreement 
with data: CO on 
atop site on a Pt6
cluster

• Other 
configurations 
tried: bridge and 
face bridging

FEFF8.2



Time-Resolved XANES

Can obtain kinetic 
information on the 
catalyst structure by 
recording the XANES in 
situ as a function of some 
parameter (temperature, 
pressure, flow rate, etc.).
Observe structural 
changes with e.g. time.
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Q-XANES & D-XANES

Page 78ESRF ID-24

Quick XANES

• Slew monochromator continuously to obtain a XANES 
spectrum in few seconds (X18B).

• All modes of detection.

Dispersive XANES

• Polychromatic beam dispersed onto linear detector.

• XANES spectrum in msec.

• Transmission only.

• Need extremely uniform samples.



TPR-XANES: In situ Kinetics of 
Transformations

Many, many examples in the literature of using in situ 
XANES to monitor the transformation of the catalyst 
from one species/oxidation state to another.
This is the most frequent current use of in situ XANES 
and catalysis.
No “knowledge” of EXAFS fitting required.
Use linear combination or PCA to determine the 
absolute amount of each species during the 
transformation.

Cu-ZSM-5Cu-ZSM-5
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Analysis of Mixtures

• XANES useful technique to quantitatively determine 
composition of a mixture of species.

• Useful for following time evolution of species during 
a chemical reaction.

• Two most common methods:

– Least squares linear combination fitting

– Principal component analysis
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Least Squares Linear Combination 
Fitting

• Use a linear combination of spectra of various reference 
samples.

• Allows quantification of species in multiple-component 
mixture from their fingerprint in the XANES region.

• Use a least-squares algorithm to refine the sum of a given 
number of reference spectra to an experimental spectrum.

• Simple method, easy to implement.

• Must have good quality spectra of the reference 
compounds recorded under similar conditions – energy 
alignment is critical.
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Linear Combination Fitting
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Future Prospects

Imaging XANES 
High resolution XANES
Selective XANES
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2D Imaging of Catalyst Structure
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2D Imaging of Catalyst Structure
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X-Selective XANES

In concept by selecting a single fluorescence 
decay channel there are many different 
types of XANES either already 
demonstrated or feasible:

– Spin-selective
– Edge-selective
– Valence-selective
– Neighbor-selective
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Examples of Application of XAFS to 
Catalyst Characterization

EXAFS
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Supported Metal Clusters: 
Information from in situ XAFS

Average metal cluster size (and shape)
Average composition of bimetallic alloy clusters 
– is an alloy formed?
d-density of states of metal clusters
Effect of adsorbates on cluster structure and 
electronic properties.



In situ XAFS and Cluster Size
The average coordination number is a strong 
function of cluster size for clusters <15Å
diameter.
Use this to estimate average cluster size.
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Supported Metal Cluster Size & 
Morphology

or

Hemispherical
Cuboctahedron (111)

Shape 
and 
texture

Cuboctahedron

Surface segregation

or orBimetallic 
alloy 
clusters

Core segregation Random
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EXAFS Analysis to Determine Size & 
Shape of Re clusters on γ-Al2O3

Re supported on γ-Al2O3 is catalyst is has been shown 
to have high activity and high selectivity in olefin 
metathesis in oxidic form; when Re forms a bimetallic 
cluster with Pt then the subsequent Pt-Re clusters are 
used in petroleum reforming catalysts. 

What is the structure of Re species on the γ-Al2O3
surface after the alumina is impregnated with 
perrhenic acid, calcined, dried and reduced? 
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Four O atoms in distorted tetrahedral arrangement (3 short, 1 long)
[ReO4] is anchored to the alumina surface through Re-O-Al linkage. 
Similar structure for 0.5-10 wt% Re.
Structure consistent with indirect characterization data in the literature 
(laser Raman & FTIR).

J. Phys. Chem. B (2006) submitted.
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Wet Reduced Re clusters on Al2O3

Reduction of oxidized Re in wet hydrogen 
leads to agglomeration of the Re clusters.
EXAFS used to estimate both the average 
size and shape of the resulting Re clusters.
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Wet Reduced Re Clusters on Al2O3

• Average cluster size not consistent with spherical or 
cuboctahedron or hemispherical models.

• Best fit to EXAFS data consistent with a 5 layer sheet-like Re 
cluster, with average diameter of ~30Å.

J. Phys. Chem. B, 2006, submitted. Page 98



Definitive Structure of “Active Site”

EXAFS can be used to obtain detailed structural 
information of the “active site” – the species present on 
the catalyst surface after some pre-treatment but prior 
to reaction, or even during the reaction.

Ideally suited when there is a well-defined bonding 
arrangement between surface species of interest and the 
support and all the species are the same, or when 
heteroatom substituted into a zeolite.

No other way to obtain this information.



EXAFS analysis of Sn-beta Zeolite: 
location of Sn atoms

Sn-beta is an excellent 
catalyst for some oxidation 
reactions.
Wanted to determine if the 
Sn is substituted into the 
zeolite framework, and if so, 
where in the framework.

J. Am. Chem. Soc. 127 (2005) 12924-12932 

Key: T5 T6 T3 T4 T1 T2 T9 T7 T8 O
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EXAFS Model for Cassiterite

Used to determine S0
2 for Sn.

The model is described by 18 parameters

Path N reff ΔR σ2 ΔE
Sn-O1 4 2.0519 Alpha∙reff σ2o1 ΔEo1
Sn-O2 2 2.0567 Alpha∙reff σ2o1 ΔEo1

Sn-Sn1 2 3.1864 Alpha∙reff σ2sn1 ΔEsn

Sn-O3 4 3.5906 Alpha∙reff σ2o3 ΔEo2

Sn-Sn2 8 3.7093 Alpha∙reff σ2sn2 ΔEsn

Sn-O5 8 4.2414 Alpha∙reff σ2o5 ΔEo2

Sn-Sn3 4 4.7373 Alpha∙reff σ2sn3 ΔEsn

Sn-O7 8 4.8006 Alpha∙reff σ2o7 ΔEo2

Sn-Sn4 8 5.7092 Alpha∙reff σ2sn4 ΔEsn

Sn-Sn5 8 5.8365 Alpha∙reff σ2sn4 ΔEsn

Sn-Sn7 4 6.6995 Alpha∙reff σ2sn7 ΔEsn

Sn-Sn8 8 7.4187 Alpha∙reff σ2sn8 ΔEsn

Sn-Sn9 16 7.6578 Alpha∙reff σ2sn9 ΔEsn
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EXAFS Model and Cassiterite data

The model reproduces the data to 7.7 Å
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Site T3
Site T7

Site T5

Local Structure about the Si Sites in Beta 

• There are three groupings of the framework sites in β-zeolite.
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EXAFS Models for Sn-Beta Zeolite, Site T5

The model is described with 13 parameters

Path N Reff (Å) ΔR σ2

Sn in Si Site 1 of beta-zeolite structure
Sn-O1 4 1.86 ΔRo1 σ2o1
Sn-O1a-O1b 
triangle

12 3.38 ΔRo1o1 σ2o1o1

Sn-Si1 3 3.57 ΔRsi1 σ2si1
Sn-O1-Si1 6 3.65 ΔRsi1 σ2si1
Sn-O1-Si1-O1 3 3.72 ΔRsi1 σ2si1
Sn-Si2 1 3.66 ΔRsi2 σ2si2
Sn-O1-Si2 2 3.70 ΔRsi2 σ2si2
Sn-O1-Si2-O1 1 3.72 ΔRsi2 σ2si2
Sn-O1-Sn-O1 4 3.72 2·ΔRsi1 4·σ2o1
Sn-O2 2 4.24 ΔRo2 σ2o2
Sn-O3 2 4.30 ΔRo2 σ2o2
Sn-O4 2 4.40 ΔRo2 σ2o2
Sn-Si3 3 4.28 ΔRsi3 σ2si3

Site T5

T5
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Comparison of Models for Beta-Zeolite
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• All models give Sn-O = 1.91Å, consistent with tetrahedral Sn(IV), 
and CN = 4. Thus, Sn is in the beta framework.
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Comparison of Models for Beta-Zeolite
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• Model for Site T5 clearly better fit to the data. Sn preferentially occupies T5 
sites in beta framework

• Supported statistically by value of χ2.  Value ~20 times less than other 2 sites.



Best Fit Values for Sn in Site T5
Path N Reff (Å) R (Å) ΔR (Å) 
  XRD for Si in 

site T5 
EXAFS for Sn in 

site T5 
% Change 

Sn-O1 4 1.62 1.906 ± 0.001 16 
Sn-Si1 3  3.15  3.50 ± 0.01 10  
Sn-Si2 1  3.20  3.86 ± 0.10 17  
Sn-O2 2 3.70  4.48 ± 0.02 19  
Sn-O3 2 3.75  4.53 ± 0.02 19  
Sn-O4 2 3.83  4.63 ± 0.02 19  
Sn-Si3 3  4.31  4.03 ± 0.05 -6.7  
Sn-Sn 1  5.01 4.99 ± 0.04 -0.4  
 

• First neighbor oxygen atom distances are expanded by 16%
• First neighbor Si atom distances are expanded by 10%
• Second neighbor Si atom distance is contracted by 7%

Site T5
10%

7%

16%
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Sn-Sn Pairing

EXAFS shows that there is negligible contribution from Sn at 4.3Å and that 
positions at 5.1Å are 100% occupied by Sn.

Thus, substitution of Sn is always paired!

If T5 site is occupied by Sn then T5 site on opposite side of 6-ring is always 
occupied by Sn.

Sn loading is 0.5 Sn per unit cell, so on average only 1 of 8 BEA unit cells 
occupied by pair of Sn atoms.
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Summary: EXAFS

Provides quantitative element specific information on:
– Distance to neighboring atoms (average bond length, Rj)
– Coordination number and type of the neighboring atoms (Nj)
– Mean-square disorder of neighboring atoms (σj

2)

Can be performed on all forms of matter.
Can be performed on all elements (>H).
Can be performed in situ.
Can provide time-resolved, and spatially resolved information.
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Summary: XANES
XANES is a much larger signal than EXAFS

XANES can be done at lower concentrations, and less-than-perfect 
sample conditions.

XANES is easier to crudely interpret than EXAFS

For many systems, the XANES analysis based on linear combinations of 
known spectra from “model compounds” is sufficient.

More sophisticated linear-algebra techniques, such as principal 
component analysis can be applied to XANES spectra.

XANES is harder to fully interpret than EXAFS

The exact physical and chemical interpretation of all spectral features is 
still difficult to do accurately, precisely, and reliably.

This situation is improving…..
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Additional Slides
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W L3-edge 
XANES of 
tungsate

k = (2m(E-E0)/h2)½

k = (0.2625 x [E-E0])½
E-E0 k

1 0.51
5 1.15

10 1.62
15 1.98
20 2.29
25 2.56
30 2.81
50 3.62

100 5.12
250 8.10
500 11.46
750 14.03

1000 16.20
1500 19.84

Miscellaneous: E to k



Miscellaneous: “Yellow book”



Transitions



Energy Resolution
Depends on divergence and intrinsic resolution.
From derivative of Bragg equation, divergence results in: ΔE/E 
= cot(θ)Δθ
Δθ determined by slits (or collimating mirror if present).

Example: 1mm slit 30m from source at 10 keV with Si(111) 
monochromator

Δθ = 1/30000 = 3.3x10-5, θ = 11.4 or cot(θ) = 4.9
From divergence: ΔE/E = 3.3x10-5(4.9) = 1.6 x 10-4

Add divergence term and intrinsic term in quadrature to get 
approximate final resolution:

ΔE/E = √(1.6x10-4)2 + (1.3x10-4)2 = 2.1x10-4 or 2.1 eV
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