Institute of Chemical Technology

Solid-state NMR Spectroscopy in Heterogeneous Catalysis

Michael Hunger

Institute of Chemical Technology University of Stuttgart, Germany

Lecture Series Heterogeneous Catalysis Fritz Haber Institute, Berlin, November 11, 2005

Examples of nuclei accessible for in situ NMR in heterogeneous catalysis

interesting isotopes (nuclear spin, relative sensitivity in comparison with ¹H)

⁷Li
$$(3/2, 0.27)$$

¹¹B $(3/2, 0.13)$
¹⁷O $(5/2, 1.1 \times 10^{-5})$
²³Na $(3/2, 9.2 \times 10^{-2})$
²⁷Al $(5/2, 0.21)$
²⁹Si $(1/2, 3.7 \times 10^{-4})$
³¹P $(1/2, 6.6 \times 10^{-2})$
⁵¹V $(7/2, 0.38)$
⁶⁷Zn $(5/2, 1.2 \times 10^{-2})$
⁷¹Ga $(3/2, 5.6 \times 10^{-2})$
¹³³Cs $(7/2, 4.7 \times 10^{-2})$

http://www.chem.tamu.edu/services/NMR/periodic/

- basics and specific problems of solid-state NMR spectroscopy
- experimental techniques of solid-state NMR spectroscopy
- applications of solid-state NMR spectroscopy:
 - characterization of surface sites on solid catalysts
 - investigation of the framework of solid catalysts
 - local structure of particels during the synthesis of solid catalysts
 - study of the mechanisms of reactions catalyzed by solid materials

Basics and specific problems of solid-state NMR spectroscopy

• Hamiltonians of the magnetic interactions of spins *I*:

$$H_{\text{total}} = H_0 + H_{\text{CS}} + H_{\text{DI}} + H_{\text{Q}} + H_{\text{K}} + H_{\text{J}}$$

 H_0 : Zeeman interaction $\gamma \cdot \hbar I_z \cdot B_0$ of nuclear spins *I* in the external magnetic field B_0

 $\nu_0 \leq 10^9 \text{ s}^{-1}$

*H*_{CS} : shielding interaction caused by the electron shell around the resonating nuclei

$$v_{CS} \le 5 \times 10^{3} \text{ s}^{-1}$$

402 1

$$H_{\rm CS} = \gamma \cdot \hbar \cdot I_z \cdot B_0 [(1 - \sigma_{\rm iso}) + \Delta \sigma \left(\frac{3\cos^2 \beta - 1}{2} + \frac{\eta}{2}\sin^2 \beta \cos 2\alpha \right)$$

- isotropic shielding:
- shielding anisotropy:

 $\sigma_{\rm iso}$ in ppm (parts per million) $\Delta\sigma$ η

- asymmetry parameters: η - Euler angles: α and β

characteristic resonance positions for different local structures:

- number and type of coordinated atoms ($\sigma_{
 m iso},\,\delta_{
 m iso}$)
- bond angle and bond lengths ($\sigma_{\rm iso},\,\delta_{\rm iso}$)
- symmetry of local structure (η)

*H*_{DI}: dipolar interaction with the magnetic dipole moments of nuclei in the local structure

 $\nu_{DI} \leq 5 \times 10^4 \; s^{\text{--}1}$

$$H_{\text{hetero.DI}} = \gamma_i \gamma_k \hbar^2 \frac{\mu_0}{4\pi} \frac{1}{r_{ik}^3} \left(\frac{1 - 3\cos^2 \beta_{ik}}{2} \right) I_{\text{zi}} I_{\text{zk}}$$

- vector between interacting nuclei *i* and *k*: r_{ik} - angle between B_0 and r_{IS} : β_{ik}

strength of dipolar interaction (broadening):

- distance of interacting nuclei (r_{ik})
- number of interacting nuclei
- orientation of molecules and complexes in solids (β_{ik})

*H*_Q: quadrupolar interaction of the electric quadrupole moment with the electric field gradient

 $\nu_Q \le 10^7 \text{ s}^{-1}$

$$H_{\rm Q} \approx \frac{e^2 q Q}{4I(2I-1)} [3I_{\rm z}^2 - I(I+1)] f \{ P_2(\alpha, \beta); P_4(\alpha, \beta) \}$$

- electric quadrupole moment in the nuclei:
- z-component of the electric field gradient:
- quadrupole coupling constant:
- second- and fourth-order Legendre polynomials:

eQ $V_{zz} = eq$ $QCC = e^2 qQ/h$ $P_2(\alpha, \beta), P_4(\alpha, \beta)$

- charge distribution in the local structure of the resonating nuclei
- *H*_J: indirect or J-coupling of nuclei via their bond electrons

 $J \le 5 \times 10^2 \text{ s}^{-1}$

Problems of NMR spectroscopy on working catalysts

magnetization:
$$M_0 = \frac{N \gamma^2 h^2 I (I+1) B_0}{(2\pi)^2 3 k_B T}$$

- absolute number of spins of N > 10¹⁹ per gram (¹H NMR)
- decrease of magnetization M₀
 with increasing temperature T

- rapid chemical exchange of adsorbate complexes at elevated temperatures
- observation times of 10 ms (flow conditions) to hours (batch conditions)
- quenching of signals in the neighborhood of paramagnetic and ferromagnetic sites
- broadening of signals due to solid-state interactions

Experimental techniques of solid-state NMR spectroscopy

High-resolution solid-state NMR techniques

- multiple-quantum MAS NMR (MQMAS)
 - sampling of three- and fivequantum transitions
 - recording of spin-echoes free of anisotropic contributions in the case of

$$t_2 = p \cdot \frac{36I(I+1) - 17p^2 - 10}{36I(I+1) - 27} \cdot t_1$$

J. Rocha et al., Topics in Current Chemistry 246 (2004) 141.

Preparation of samples under vacuum in glass inserts

- calcination and loading of the catalyst material inside a glass insert (Pyrex)
- fusing of the glass inserts during the sample in cooled with liquid nitrogen
- suitable for ex situ and in situ MAS NMR studies under batch conditions

M. Hunger et al., in: B.M. Weckhuysen, In Situ Spectroscopy of Catalysts, ASP, 2004, p. 177.

Approach for batch and continuous-flow experiments in an external reactor

- apparatus for evacuation, loading and catalysis on solid materials in an external reactor
- no contact to air during the transfer of the catalyst material into an MAS NMR rotor
- sealing of the MAS NMR rotor inside the apparatus

W. Zhang et al., Chem. Commun. (1999) 1091.

continuous injection of reactants into a spinning MAS NMR rotor reactor (*T* < 923 K)

M. Hunger, T. Horvath, J. Chem. Soc., Chem. Commun. (1995) 1423.

Continuous-flow (CF) MAS NMR technique

• modified 4 mm Bruker MAS NMR probe equipped with an injection system

A. Buchholz et al., Microporous & Mesoporous Mater. 57 (2003) 157.

Characterization of surface sites on solid catalysts

Surface OH groups

typical OH groups on solid catalysts (e.g. zeolite Y):

 Broensted acid sites, bridging OH group (SiOHAI):

- defect SiO OH groups
- metal OH groups at extraframework species:
 - AIOH formed upon dealumination
 - cation OH groups (MgOH, CaOH, LaOH ...) formed upon exchange with multivalent cations

¹H MAS NMR studies of the hydroxyl coverage

5.2 to 13 ppm

J. Jiao et al., J. Phys. Chem B. 108 (2004) 14305.

Quantitative studies of the hydroxyl coverage

comparison of the ¹H MAS NMR intensities with that of a well defined standard:

total OH intensities: give the total OH concentrations, determination of the samples mass

relative OH intensities: simulation and separation of the ¹H MAS NMR spectra, distribution of the OH concentrations

absolute concentrations of different OH groups:

calculation using the above-mentioned experimental values and the OH concentration of the standard

J. Jiao et al., J. Phys. Chem B. 108 (2004) 14305.

Study of the accessibility and strength of surface sites

Surface site	Probe molecule	Resonance / Effect
Brønsted acid sites:	pyridine-d ₅	¹ H: hydrogen-bonded pyridine at ca. δ_{1H} = 10 ppm (SiOH) and pyridinium ions at δ_{1H} = 12 to 20 ppm (SiOHAI)
	acetonitrile-d ₃	¹ H: adsorbate-induced low-field shift by $\Delta \delta_{1H}$ = 4.3 (H-Y) to 7.1 ppm (H-ZSM-5)
	trichloroacetonitrile	¹ H: adsorbate-induced low-field shift by $\Delta \delta_{1H} = 3.0$ (H-Y) to 4.9 ppm (H-ZSM-5)
	perchloroethylene*)	¹ H: adsorbate-induced low-field shift by $\Delta \delta_{1H} = 0.75$ (SiOH) to 1.9 ppm (SiOHAI)
	perfluorotributyl amine	¹ H: adsorbate-induced low-field shift of accessible OH groups by $\Delta \delta_{1H} = 0.23$ (SiOH) to 0.47 ppm (AIOH)
	deuterated alkanes and aromatics	¹ H: H/D exchange, activation energy
	¹³ C-2-acetone	¹³ C: hydrogen-bonded acetone at δ_{13C} = 216.8 (H-SAPO- 5) to 225.4 ppm (H-ZSM-22)
	¹⁵ N-pyridine ^{*)}	¹⁵ N: hydrogen-bonded pyridine at δ_{15N} = 295 ppm and pyridinium ions at 198 ppm

Study of the accessibility and strength of surface sites

Lewis acid sites:	¹³ C-2-acetone	¹³ C: adsorbed acetone at δ_{13C} = 233 ppm
	¹⁵ N-pyridine ^{*)}	¹⁵ N: adsorbed pyridine at δ_{15N} = 265 ppm
	trimethylphosphine oxide (TMPO)	³¹ P: adsorbed TMPO at δ_{31P} = 37 ppm
Base sites:	trichloromethane	¹ H: hydrogen-bonded trichloromethane at δ_{1H} = 7.55 (Li-Y) to 8.23 ppm (Cs;Na-Y-90)
	pyrrole	¹ H: hydrogen-bonded pyrrole at δ_{1H} = 8.4 (Li-Y) to 11.5 ppm (K-X)
	chloroform	¹ H: hydrogen-bonded chloroform at δ_{1H} = 7.45 (H-Y) to 8.70 ppm (Na,Ge-X)
	¹³ C-chloroform	¹³ C: hydrogen-bonded ¹³ C-chloroform at δ_{13C} = 77.9 (H-Y) to 81.7 ppm (Na,Ge-Y)
	¹³ C-methyl iodide, ¹³ C-methanol	¹³ C: methoxy groups occurring at δ_{13C} = 58.5 (Na-ZSM-5) to 54.0 ppm (Cs,Na-X)

Characterization of basic sites on solid catalsts

- ¹³C MAS NMR spectroscopy of surface methoxy groups formed on basic oxygen atoms
- conversion of CH₃I on basic zeolites:

Cs⁺ Si^{AI} + CH₃I

 $\xrightarrow{\mathsf{CH}_3}_{\mathsf{Q}} + \mathsf{Csl}$

 signals at 54.3 to 59.2 ppm with a chemical shift anisotropy of ca. Δσ = - 40 ppm

U. Schenk, PhD thesis, University of Stuttgart, 2001.

Base strengh of zeolite catalysts

•

Investigation of the framework of solid catalysts

Determination of the framework aluminum content of zeolites by ²⁹Si MAS NMR

• signals of Q⁴ silicon atoms:

-90 ppm	Si(1Si,3AI)
-95 ppm	Si(2Si,2AI)
-101 ppm	Si(3Si,1AI)
-107 ppm	Si(4Si)

$$n_{\text{Si}} / n_{\text{Al}} = \sum_{n=0}^{4} I_{\text{Si}(n\text{Al})} / \sum_{n=0}^{4} \frac{n}{4} \cdot I_{\text{Si}(n\text{Al})}$$

²⁹Si MAS NMR of non-hydrated zeolites

determination of the framework aluminum content after loading with ammonia

Quadrupolar interaction of aluminum atoms in zeolite catalysts

• electric field gradient:

$$V_{zz} = eq$$

• quadrupole coupling constant:

$$QCC = \frac{e^2 q Q}{h}$$

samples	QCC values*
hydrated H-Y and H-ZSM-5	2 MHz
non-hydrated Na-Y	5 MHz
non-hydrated H-Y	16 MHz
Alex in non-hydrated H-ZSM-5	ca. 9 MHz
pyridine-loaded H-Y	5 MHz
ammonia-loaded H-Y	5 MHz

*) D. Freude et al., Solid State Nucl. Magn. Reson. 3 (1994) 271; M. Hunger et al., Stud. Surf. Sci. Catal. 94 (1995) 756; C.D. Grey, A.J. Vega, J. Am. Chem. Soc. 117 (1995) 8232; M. Hunger, Catal. Rev.-Sci. Eng. 39 (1997) 345; K.U. Gore et al. J. Phys. Chem. B 106 (2002) 6115; W. Wang et al., Chem. Phys. Lett. 370 (2003) 88.

Study of aluminum species by ²⁷AI MAS NMR

signal 1: δ_{iso} = 75 ppm, SOQE ca. 5.8 MHz signal 2: δ_{iso} = 62 ppm, SOQE = 2.6 MHz signal 3: δ_{iso} = 3 ppm, SOQE = 2.3 MHz

signal 1: δ_{iso} ca. 70 ppm, SOQE ca. 5.0 MHz signal 2: δ_{iso} = 62 ppm, SOQE = 2.6 MHz

Effect of adsorption studied by ²⁷AI MAS NMR

Effect of the base strength of the adsorbate molecules on ²⁷Al nuclei

quadrupole coupling constant plotted as a function of the proton affinity PA

Characterization of the aluminum distribution in zeolites

- dealuminated zeolite (non-hydrated state):
 - zeolite H,Na-Y steamed at 475°C with a water vapor pressure of 81.5 kPa
 - framework $n_{\rm Si}/n_{\rm AI}$ ratio of 5.8
- reference materials (dehydrated state):
 - parent zeolite H,Na-Y
 - zeolite Al,Na-Y with a cation exchange degree of 69 %
 - X-ray amorphous γ -Al₂O₃, specific surface area of 150 m²/g
- spectroscopic methods:
 - ²⁷Al spin-echo NMR at B_0 = 9.4, 14.1, and 17.6 T
 - ²⁷Al high-speed MAS NMR at B_0 = 17.6 T with v_{rot} = 30 kHz
 - ²⁷AI MQMAS NMR at B_0 = 17.6 T, split-t₁ pulse sequence

²⁷AI MQMAS NMR studies of reference materials

²⁷Al solid-state NMR studies of reference materials

parameters of signal Al^{x+} cat.:
 - QCC = 6.0 MHz, η = 0.7
 - δ_{iso} = 35±5 ppm
 - I_{rel} = 24 %

- parameters of signal Al^{IV}/Na⁺:
 QCC = 5.5 MHz, η = 0.8
 δ_{iso} = 60±5 ppm
 I_{rel} = 28 %
- parameters of signal Al^{IV}/Al^{x+}:
 QCC = 14.5 MHz, η = 0.3
 δ_{iso} = 70±5 ppm
 I_{rel} = 48 %

²⁷AI MQMAS NMR studies of dealuminated zeolite Y

- parameters of signal 1:

 SOQE = 15.0±1.0 MHz
 δ_{iso} = 70±10 ppm
- Parameters of signal 2: - SOQE = 8.0±0.5 MHz - δ_{iso} = 65±5 ppm
- parameters of signal 3:
 SOQE = 7.5±0.5 MHz
 δ_{iso} = 35±5 ppm
- parameters of signal 4:
 SOQE = 5.0±0.5 MHz
 δ_{iso} = 10±5 ppm

²⁷Al solid-state NMR studies of dealuminated zeolite Y

- signal 1 (70 ppm, QCC: 15 MHz):
 Al^{IV}/H⁺: 17 SiOHAl/u.c.
 Al^{IV}/Al^{x+}: 8 Al/u.c.
- signal 2 (65 ppm, QCC: 8 MHz):
 Al^{IV}/Na⁺: 4 Al/u.c.
 cluster Al^{IV}: 10 Al/u.c.
- signal 3 (35 ppm, QCC: 7.5 MHz):
 Al^{x+} cations: 11 Al/u.c.
- signal 4 (10 ppm, QCC: 5 MHz):
 cluster Al^{vi}: 2 Al/u.c.

Determination of the distance between resonating nuclei

• echo decay is described by REAPDOR fraction:

$$\frac{S_0 - S(N_c T_r)}{S_0} = \frac{1}{\pi^2 S(S+1)} (N_c T_r)^2 M_2^{IS}$$

with
$$M_2^{IS} = \frac{4}{15} \left(\frac{\mu_o}{4\pi}\right)^2 \gamma_I^2 \gamma_S^2 \hbar^2 S(S+1) \frac{1}{N_I} \sum_{j=1}^{N_f} \sum_{k=1}^{N_s} r_{jk}^{-6}$$

T. Gullion, Chem. Phys. Lett. 246 (1995) 325.

Determination of the distance between Si and Al nuclei in ETAS-10

• ²⁹Si/²⁷AI REAPDOR NMR experiment on aluminotitanosilicate ETAS-10:

Local structure of particels during the synthesis of solid catalysts

→ formation of zeolite particles already within the first 16 h

²⁹Si MAS NMR of zeolite [Ga]Beta $(n_{Si}/n_{Ga} = 8.2)$

²⁹Si MAS NMR of zeolite [Ga]Beta $(n_{Si}/n_{Ga} = 8.2)$

incorporation of gallium into the zeolite framework

⁷¹Ga MAS NMR of zeolite [Ga]Beta $(n_{Si}/n_{Ga} = 8.2)$

Two-dimensional ⁷¹Ga MQMAS NMR spectroscopy of [Ga]Beta obtained after 65 h

Acid strength of zeolites Beta and EU-1

Study of the mechanism of reactions catalyzed by solid materials

Side-chain alkylation of toluene with methanol on basic zeolites

- reaction scheme proposed by Yashima et al., J. Catal. 26 (1972) 303:
 - activation of toluene by adsorption on the zeolite
 - conversion of methanol to formaldehyde catalyzed by base sites

- proposed surface species:
 - formate (δ_{13C} = 166 ppm)
 - carbonate (δ_{13C} = 171 ppm)

NMR characterization of the calcined zeolite CsOH/Cs,Na-X

80

60

40

20

U. Schenk, PhD thesis, University of Stuttgart, 2001.

 δ_{13C} /ppm 100

12

6

Ô

-6

 δ_{1H}/ppm

Adsorbate complexes formed by the reactants on zeolite CsOH/Cs,Na-X

 ¹³³Cs MAS NMR spectroscopy performed before and after adsorption of methanol and toluene

M. Hunger et al., J. Mol. Catal. A: Chem. 156 (2000) 153.

Side-chain alkylation of toluene on basic zeolites X under batch conditions

¹³C MAS NMR spectroscopy:

15 C₆H₅¹³CH₃/u.c. 5 ¹³CH₃OH/u.c.

M. Hunger et al., J. Mol. Catal. A: Chem. 156 (2000) 153.

Reactivity of formate species on zeolite CsOH/Cs,Na-X under flow conditions

M. Hunger et al., J. Mol. Catal. A: Chem. 156 (2000) 153.

Investigation of reaction pathways by selectively labelled reactants

• isomerization of cumene to n-propylbenzene on zeolite H-ZSM-11 in the presence of benzene

experiments A and B indicate an intermolecular reaction mechanism

E. Derouane et al., Catal. Lett. 58 (1999) 1.

Evaluation of reaction mechanisms by H/D exchange on acidic zeolites

• H/D exchange of propane-d₈ (A) and isobutane-d₁₀ (B) with SiOHAI groups on H-ZSM-5

A.G. Stepanov et al., Catal. Lett. 54 (1998) 1; J. Sommer et al., J. Catal. 181 (1999) 265.

Coupling of in situ CF MAS NMR and on-line gas chromatography

M. Hunger et al., Catal. Lett. 57 (1999) 199.

Conversion of methanol on H-SAPO-34 studied by in situ ¹³C CF MAS NMR

M. Hunger, et al., Catal. Lett. 1-2 (2001) 61.

Role of the carbon pool in the MTO process on H-ZSM-5

switching of the reactant flow induces a decrease of the ¹³C-isotopes in the alkyl groups:

- alkyl groups are involved in the formation of olefins
- carbon pool plays an active role in the MTO process

M. Seiler et al., Catal. Lett. 88 (2003) 187.

Study of surface compounds by in situ SF (stopped-flow) MAS NMR

selective preparation of adsorbate complexes by purging the volatile reactants in period (ii) and study of their further reaction in period (iii)

investigation of the reactivity of surface compound and intermediates

Methylation of aromatics by surface methoxy groups

reaction of methoxy groups with toluene on zeolite H-Y

 methylation of aromatics by surface methoxy groups starts at *T* = 433 K

W. Wang et al., J. Am. Chem. Soc. 125 (2003) 15260.

Summary I

advantages:

FTIR:

- low costs
- commercially available
- large temperature range

UV/Vis:

- low costs
- high sensitivity
- large temperature range

ESR:

- high sensitivity
- sensitive for the local structure of adsorbates and surface sites

NMR:

- large number of NMR sensitive nuclei
- good separation of signals

disadvantages:

FTIR:

- broad and overlapping bands
- no direct quantitative evaluation
- problematic assignment of bands

UV/Vis:

- limited application
- broad and overlapping bands
- problematic assignment of bands

ESR:

- limited application
- strong line broadening at high temperatures

NMR:

- high costs
- low sensitivity
- long observation time

applications of solid-state NMR spectroscopy in heterogeneous catalysis:

- concentration and chemical behaviors of surface sites
- local structure and composition of the framework of solid catalysts
- structure of particles formed during the synthesis of solid catalysts
- intermediates and surface compounds formed upon conversion of reactants on solid catalysts