Einfluss eines äußeren Magnetfeldes

Spin und magnetisches Moment von Elektronen und Kernen

Energie von Elektronen im äußeren Magnetfeld

Elektron in einem Atom

$$H = \beta \vec{B} \cdot (\vec{L} + g_e \vec{S}) + \lambda \vec{L} \cdot \vec{S} = \beta \vec{B} \cdot g \cdot \vec{S}$$

g - Anisotropie des ESR-Spektrums von VO²⁺

$$H = \beta [g_{\perp} (B_x \hat{S}_x + B_y \hat{S}_y) + g_{\parallel} B_z \hat{S}_z] = \beta \vec{B} \cdot \hat{g} \cdot \hat{S}$$

Pulver-ESR-Spektrum

Summe über alle möglichen Orientierungen der magnetischen Achsen von VO²⁺ gegenüber \overrightarrow{B}

Kopplung von Elektronen- und Kernspin

 $S = \frac{1}{2}, I = \frac{1}{2}$

Beispiel: H-Atom a_{iso} = 50,68 mT

Anzahl der Hyperfeinlinien:

 $(2I_1 + 1) (2I_2 + 1) \dots (2I_n + 1)$

Bei Kopplung mit n äquivalenten Kernen:

(2nI + 1)

 $\boldsymbol{A}_{iso} = \frac{2\mu_0}{2} \boldsymbol{g} \beta_{e} \boldsymbol{g}_{n} \beta_{n} | \boldsymbol{\psi}(0) |^2$

Anisotropie der Hyperfeinkopplung von VO²⁺

Kopplung von \vec{S} und \vec{I} für V: I = 7/2

Aufspaltung jedes Elektronenniveaus in (2I + 1) = 8 Hyperfeinniveaus

$$E_{dipolar} = -\frac{\mu_0}{4\pi} \frac{3\cos^2\theta - 1}{r^3} \mu_{nz} \mu_{ez}$$

Pulver-ESR-Spektrum von VO²⁺

Abhängigkeit des V⁴⁺-ESR-Spektrums von der Koordinationsgeometrie (oktaedrisch, VO²⁺)

Abhängigkeit des V⁴⁺-ESR-Spektrums von der Koordinationsgeometrie (tetraedrisch)

 $\Delta E \approx h/2\pi\tau$ + kurze Relaxationszeiten, große Linienbreiten

EPR von V³⁺ (d²)

Intensität von EPR-Signalen

Temperaturabhängigkeit der Signalintensität

$$\vec{M} \approx N_{v}\vec{\mu} \qquad I \sim \chi_{m} = \frac{M \cdot \mu_{m}}{B} \qquad M = \frac{N_{v}\mu^{2}B}{3kT} \text{ (therm.Gleichgewicht)}$$

$$\vec{I} \sim \chi_{m} = \frac{N_{v}g^{2}\beta^{2}S(S+1)\mu_{m}}{3k} \cdot \frac{1}{T}$$

$$\vec{\chi}_{m} = \frac{C}{T}$$

$$Curie \qquad Curie - Weiß \qquad 0$$

$$\vec{\theta} \qquad T$$

Magnetische Wechselwirkung von VO²⁺ in (VO)₂P₂O₇

Measure of exchange efficiency:

- ΔE exchange energy
- J exchange integral (when crystal structure is known)

$$J = \frac{\Delta E}{2zS_i(S_i+1)}$$

Exchange Energy ΔE derived by the cluster model

EPR – apparative Details

Einfluss der Mikrowellenfrequenz

E,

Band	ν / GHz	B _R /mT	λ / cm
L	1,5	54	19,9
S	3,0	111	9,3
Х	9,5	350	2,9
K	25,0	890	1,1
Q	35,0	1250	0,8
W	95,0	3400	0,3

,(g∥) (g⊥) hv Q hv_{X} $hv_Q \rightarrow B$ B B⊥x B_IQ $B_{\perp O}$ ∆Bany (g_{||}) (g⊥) ∆Ban_O g∥>g⊥

 $\Delta E = h v = g_e \beta B_o$

 $H = \beta \vec{B} \cdot \hat{g} \cdot \hat{S} + \hat{S} \cdot \hat{A} \cdot \hat{I} + \hat{S} \cdot \hat{D} \cdot \hat{S}$

Feld-Modulation und Signalform

Operando-EPR/UV-vis/Raman-Kopplung am ACA

A. Brückner, Chem. Commun. (2005) 1761.

Oxidative Dehydrierung von Propan an einem 6 % V/TiO₂ – Trägerkatalysator

$$CH_3 - CH_2 - CH_3 + \frac{1}{2}O_2 \Rightarrow CH_3 - CH = CH_2 + H_2O$$

6% V/anatase (2.2% sulfate) 8.3 % C₃H₈, 8.3 % O₂ / N₂ up to 250°C

V reduction almost completed above 250°C
 Selectivity increases with V reduction

8.3 % C₃H₈, 8.3 % O₂ / N₂ at 250 – 450 °C

Nature of two different isolated VO²⁺

Nature of two different isolated VO²⁺

Influence of sulfate

- on sulfate-free anatase only species B observed A. Brückner et al., Z. Anorg. Allg. Chem. 631, 60, 2005
- hints for bonding of VO²⁺ and/or VO³⁺ to SO₄ also from FTIR and thermal analysis

 sulfate might stabilize VO²⁺ as active species on the surface prevents reduction to V³⁺ prevents agglomeration prevents diffusion into the bulk of the support

Struktur und Reaktivität ungeträgerter Vanadiumpyrophosphate

Permanent disorder and catalytic performance in differently calcined (VO)₂P₂O₇

+1)

$$J = \frac{\Delta E}{2zS_i(S_i)}$$

J values from suszeptibility measurements:

-30.6 cm⁻¹

J. W. Johnson et al., *J. Am. Chem. Soc.* 106 (1984) 8123.

-29.9 cm⁻¹

M. E. Leonowicz et al., *J. Solid State Chem.* 56 (1985) 370.

- the weaker spin-spin exchange (low |J|), the higher structural disorder
- the higher structural disorder, the higher the MA yield

Identifying active phases by spin-spin exchange in toluene ammoxidation

Toluene \rightarrow benzonitrile over $(NH_4)_2(VO)_3(P_2O_7)_2$ Electronic changes evidenced by spin-spin exchange

51 % air + 7.4 % NH_3 + 40 % $H_2O \pm 1.6$ % CH_3 - C_6H_4 -R

