

Modern Methods in Heterogeneous Catalysis Research: Theory and Experiment

Auger electron spectroscopy (AES) and modulation techniques

Wolfgang Ranke Dep. Inorganic Chemistry Group Surface Analysis Fritz-Haber-Institut der MPG

For script: see homepage

or mail to: ranke@fhi-berlin.mpg.de

Content			
AES – basics	Modulation method, Lock-In		
AES – surface sensitivity	Qualitative/quantitative analysis		
Electron energy analysis	Chemical information		
e-beam influences			

FHI-Berlin, 29.10.2004

Ranke, Surface Analysis, Dept. AC, Fritz Haber Institute of the MPG, Berlin, Germany

Literature - AES:

G. Ertl, J. Küppers, Low Energy Electrons and Surface Chemistry, VCH, Weinheim (1985). J.W. Niemantsverdriet, Spectroscopy in Catalysis, Wiley-VCH, Weinheim (2000).

- G.E. McGuire, Auger Electron Spectroscopy Reference Manual, Plenum Press, New York (1979).
- L.E. Davis et al., Handbook of Auger Electron Spectroscopy, Physical Electronics Ind. Inc., Eden Prairie (1976).

Literature - Lock-In, Modulation techniques:

- M.L. Meade, Lock-In Amplifiers: Principle and Applications, Peter Peregrinus Ltd., London (1983).
- R.K. Willardson, A.C. Beer (eds.), Semiconductors and Semimetals, Vol. 9: Modulation Techniques, Academic Press, New York (1972).

WikipediaEnglish:http://en.wikipedia.orgGerman:http://de.wikipedia.org

AES - basics

Auger process (P. Auger, 1923)

Nomenclature:				
$\begin{array}{c} 1s\\ 2s\\ 2p_{1/2}\\ 2p_{3/2}\\ 3s\\ 3p_{1/2}\\ 3p_{3/2}\\ 3d_{3/2}\\ 3d_{5/2}\\ & etc. \end{array}$	$f{K}\ L_1\ L_2\ L_3\ M_1\ M_2\ M_3\ M_4\ M_5$		or V if valence band	

AES – surface sensitivity

full curve:

$$I_n = A_n / E^2 + B_n E^{1/2}$$

elements: $A_n = 143, B_n = 0.054$

inorg. compounds: $A_n = 641, B_n = 0.096$

org. compounds: $A_n = 31, B_n = 0.087$

[M.P. Seah, W.A. Dench Surf. Interf. Anal. 1, 1 (1979).]

Surface sensitivity:

- limited penetration depth of e_{p.}
- limited escape depth of e_{KLM}, only ~0.5 nm at 100 eV (~2-3 ML)
- even higher surface sensitivity for grazing incidence / escape

AES – electron energy analysis

AES – electron energy analysis

Example: CMA

AES – modulation method

AES – Lock-In technique

AES – Lock-In technique

Suppression of odd harmonics by band-pass filter at LI-input

6 db or 12 db per octave

AES – signal smoothing

Low-pass filter

smoothed signal

- always lags behind (by τ)
- \bullet cannot follow changes faster than $1/\tau$

S/N ratio ~ τ	For low enough modamp.:
For too high τ :	output ~ modamp.
smearing of structures	Then: smearing of structures

Find best compromise:	peak width : modamp.	
	S/N	: τ vs. dE/dt

Energy:

Position of (neg.) minimum in 1st derivative spectrum (easy to determine)

Intensity:

Often peak-to-peak intensity Better minimum-to-zero-line intensity (less dependent on loss structure)

AES – quantitative aspects

The sensitivity of peaks from all elements does not differ by more than a factor of 10 - 50.

Relative sensitivity factors; attention: valid for certain experimental setup [Davis]

Two components:

$$x_A^{}/x_B^{} \approx \frac{J_A^{}/J_{A0}^{}}{J_B^{}/J_{B0}^{}} = \frac{J_A^{}/S_A^{}}{J_B^{}/S_B^{}}$$

x_i molar fractions

- J_i measured intensities
- $J_{\mathrm{i0}}\,$ intensity of component alone
- S_i rel. sensitivity factors

AES – quantitative aspects

AES – quantitative aspects

Continuous layer

(extinction law)

AES – quantitative aspects Discrete layer model

AES – Peak shapes

Especially if the (wide) valence band is involved, peaks are wide and contain valence band structure.

Example Si_{1 VV} peak: self-folding of V-band, chemical (and relaxation?) shifts.

Ni (100)

700K

1000s

(100)

32mbar CO 600K 1000s

350

200

250

Energy eV

300

350

300

100 200 300 400 Energy eV

(a)

N'(E)

(c)

N' (E)

200

250

Energy eV

[Niemantsverdriet, fig. 3.24] Kinetic Energy (eV)

230

240

250

260

270

280

AES – Peak shapes

electron stimulated oxidation of GaAs

AES – electron beam influence

Example: GaAs(111)-Ga

AES during oxygen admission causes strongly enhanced adsorption on the spot irradiated by electrons:

electron-stimulated oxidation.

In the center of the beam, As is depleted and Ga enriched:

 As_2O_5 desorbs (high vapor pressure) Ga_2O_3 remains.

Probable reason: e⁻⁻induced dissociation of molecularly adsorbed O₂.

[Ranke, Jacobi, Surf. Sci. 47 (1975) 525]

AES – electron beam influence

Adsorbates may be decomposed and (partially) desorb

Affects quantitative analysis.

Substrate usually unaffected.

Responsible:

All e⁻ with sufficient energy, i.e. mainly secondaries.

- AES: primary e⁻ cause many secondaries strongly "destructive".
- XPS, UPS: primary radiation causes less secondaries less destructive.

Modern Methods in Heterogeneous Catalysis Research: Theory and Experiment

AES – Conclusions

- UHV-method
- elemental analysis
- comparatively simple
- independent of excitation energy
- difficult for insulating materials
- surface sensitive (0.4 2 nm)
- qualitative analysis simple
- quantitative analysis possible
- destructive (for molecular adsorbates)
- chemical information

ranke@fhi-berlin.mpg.de