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AES - basics

Secondary electron spectrum:
Auger-e- are special
secondary electrons.



ϕ

Auger process

excitation)* relaxation Auger decay

)* core ionization may also occur by
X-ray photoionization (=> XPS)

AES - basics

alt.:
hν

Prob. of core
hole creation
Ei e- binding E
Ep e- impact E

(prim. E)

Auger decay
preferred for 
light elements,
X-ray decay
preferred for
heavy elements

EKLM is independent of Ep.
1st approx.:
EKLM = EK – EL – EM – ∆E – ϕ
EKLM kin. energy of Auger electron
EK binding energy of K-electron etc.
ϕ work function
∆E relaxation shift 

(P. Auger, 1923)



Nomenclature:

1s K
2s L1
2p1/2 L2
2p3/2 L3
3s M1 or V if
3p1/2 M2 valence
3p3/2 M3 band
3d3/2 M4
3d5/2 M5

etc.

AES - basics

Two-hole final state:
no Auger peaks from
H, He.

Insulating samples:
charging problems.



AES – surface sensitivity

Energy (eV)

λn
(nm)

full curve:

ln = An/E2 + Bn E1/2

elements:
An = 143,  Bn = 0.054

inorg. compounds:
An = 641,  Bn = 0.096

org. compounds:
An =   31,  Bn = 0.087

[M.P. Seah, W.A. Dench
Surf. Interf. Anal. 1, 1 (1979).]

elements

Inelastic electron mean free path λ for elements
(„universal curve“).

Ep

EKLM

Surface sensitivity:
• limited penetration depth of ep,
• limited escape depth of eKLM,   only ~0.5 nm at 100 eV (~2-3 ML)
• even higher surface sensitivity for grazing incidence / escape



electron energy
analyser

AES – electron energy analysis



AES – electron energy analysis
Example: CMA

Uretard (Ekin) t

Other analyser types: Hemispherical analyser
Cylindrical sector analyser,
Retarding field analyser (LEED optics)



AES – modulation method

Uretard (Ekin) t

with modulation

Problem: small signal on
high background,
noise ~sqrt(N)



x

AES – modulation method

Input signal

F(x)

modulation

at signal maximum:
no signal at fmod
but signal at 2 fmod!
=>
2 fmod-signal is
proportional to
curvature = 2nd derivative !

Phase changes
by 180° when
going from
uphill to downhill:
Phase-sensitive
rectification:
Lock-In amplifier

Lock-in
output 

(derivative) Zero crossing
at peak maximum 

dF(x)/dx

amplitude of
ac-signal
is prop. to
1st derivative
of F(x)



AES – Lock-In technique



AES – Lock-In technique

1 2

3

phase shift
adjustment

reference
r(t)

reference
shaped

SIGNAL

multiplication

Lock-In
output

1

2

3

This example: 
S/N~1

Possible:
up to 
S/N~1/1000



AES – Lock-In technique

Lock-In:
Amplification of
odd harmonics

I0 1/3 I0

Suppression
of odd harmonics

by band-pass
filter at LI-input

6 db or 12 db
per octave



AES – signal smoothing

smoothed signal 
• always lags behind (by τ)
• cannot follow changes faster than 1/τ

Low-pass filter

tide-gauge

float

R

C

in out

τ = RC



AES – signal smearing

S/N ratio ~ τ
For too high τ:
smearing of structures

Find best compromise:  peak width : mod.-amp.
S/N : τ vs. dE/dt

Energy:
Position of (neg.) minimum in 1st

derivative spectrum (easy to determine)

Intensity:
Often peak-to-peak intensity
Better minimum-to-zero-line intensity
(less dependent on loss structure)

For low enough mod.-amp.:
output ~ mod.-amp.
Then: smearing of structures

[McGuire]
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AES – survey of peak positions

All
elements
have
intense
peaks
between
~50 eV
and
~1500 eV



Relative sensitivity factors; attention: valid for certain experimental setup [Davis]

xi molar fractions
Ji measured intensities
Ji0 intensity of component alone
Si rel. sensitivity factors

xA/xB ≈              = 
JA/JA0

JB/JB0

JA/SA

JB/SB

Two components:

AES – quantitative aspects 

The sensitivity
of peaks from
all elements
does not differ
by more than
a factor of
10 – 50.



AES – quantitative aspects 

Pt

Pt

Pt

meas.     bulk derived
compos.

JFe/JO xFe/xO SFe/SO

0.30 1 0.3
„too high“ O-signal
explanation:
O-terminated

0.28 0.75 0.37

0.25 0.67 0.37

Handbook:
0.4

C

„Auger-clean“ Spectrum appears free of C-peak.
Actually: noise ≈ 3% of O-peak intensity
→ JC ≤ 3% of JO or ~6% of (JO+JFe)

Measure with high S/N,
(slow speed)



AES – quantitative aspects 
Continuous layer

(extinction law)

)

example: oxygen



AES – quantitative aspects 
Discrete layer model

layer
by

layer

example:
Ag on W(110)

microbalance signal
of Ag deposition 

AES
signal

of
Ag

[Bauer, Poppa, 
Thin Solid Flms 
12 (1972) 167]

break



AES – quantitative aspects 
Discrete layer model

layer
by

layer

island
20%

coverage



AES – Peak shapes 

[Niemantsverdriet, fig. 3.24]

[Ertl, Küppers, fig.  2.13]

Especially if the (wide)
valence band is involved,
peaks are wide and 
contain valence band
structure.
Example SiLVV peak:
self-folding of V-band,
chemical (and relaxation?)
shifts. [Ertl, Küppers, fig.  2.31]

Si-O

Si-N

Si-H

Si-Si

SiLVV

[Ertl, Küppers, fig.  2.33]

CKVV

graphitic (sp2)

carbidic (sp3)



AES – Peak shapes 

[Ranke, Jacobi, Surf. Sci. 47 (1975) 525]

GaAs(111),
clean

increasing
oxidation,

e--stimulated

chemical shift
of Ga-peak

As depletion at surface

As-peak
very surface sens.

As-peaks
less surface sens.

24 h later

GaAs

GaAs

Ga2O3

GaAs

Ga2O3,
As

electron stimulated oxidation of GaAs



AES – electron beam influence Example:
GaAs(111)-Ga

AES during oxygen admission
causes strongly enhanced adsorption
on the spot irradiated by electrons:

electron-stimulated oxidation.

In the center of the beam, 
As is depleted and Ga enriched:

As2O5 desorbs (high vapor pressure)
Ga2O3 remains.

position on the sample

O(510)

Ga(1070)

As(1228)

[Ranke, Jacobi, Surf. Sci. 47 (1975) 525]

Probable reason:
e—induced dissociation of
molecularly adsorbed O2.



AES – electron beam influence 

Responsible:
All e- with sufficient energy,
i.e. mainly secondaries.

AES: primary e- cause many secondaries
strongly „destructive“.

XPS, UPS: primary radiation causes less secondaries
less destructive.

Adsorbates may be
decomposed and
(partially) desorb

Affects quantitative analysis.

Substrate usually unaffected.



AES – Conclusions 

• UHV-method
• elemental analysis
• comparatively simple
• independent of excitation energy
• difficult for insulating materials
• surface sensitive (0.4 – 2 nm)
• qualitative analysis simple
• quantitative analysis possible 
• destructive (for molecular adsorbates)
• chemical information
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