

Dr. Thiedig

Nano-structured catalysts: Preparation from lab to technical scale

Dr. Jean Boris Stelzer

New Market – New Catalysts

DIE GESCHICHTE DER ENERGIETRÄGER

World population

*Thesis of oil reserve and price

Die Glockenkurve sagt voraus, daß es demnächst abwärts geht. Steigen würden nur die Preise – und damit der Anreiz, nach Alternativen zu suchen.

Worldwide energy demand

Forecast of World Energy Needs Until 2020

*Oil production of the OPEC

* Die Welt, 1. 4. 2004

*Oil price trend of the OPEC since 2002

* Die Welt, 31. 3. 2004

Energy in Germany

- 1. Nuclear power
- 2. Brown coal
- 3. Coal
- 4. Natural gas
- 5. Hydro power
- 6. Wind power

Regenerative energy sources

e.g. fuel cell

Gas to Liquids - Fischer-Tropsch

What is Fischer-Tropsch?

- Paraffins
- Naphta
- Kerosene
- Diesel
- Waxes

Signs of the time

- Natural Gas will play a major role in the 21st century
- Competing Technologies:
 Pipeline, LNG, GTP/GTL -> (GTO, GTDME, GTG, <u>Fischer-Tropsch</u>)
- Driving Forces for GTL via FT
 - Cost of GTL plants coming down
 - > Oil price likely to increase
 - Fuel consumption on the increase
 - Resources are limited
 - Cheap Natural Gas
 - Qatar, Iran, Nigeria, Brasil, Bolivia Russia, Indonesia etc. are interested to monetise their gas reserves
 - Utilisation of "Stranded Gas"

Gas to Liquids - Market

Signs of the time

Driving Forces for GTL via FT

- Company Strategies
 - Shell had to reduce their estimated oil
 - reserves by 20% compensation by NG?
 - Sasol will set the standards others likely to follow.
- Environmental
 - High fuel quality (sulphur < 5ppm, aromatics < 1%, lower smoke discharge)
 - Pressure to stop flaring of associated gas
- Present world capacity: 50,000 bpd
- Expected to grow to 500,000 in the next decade

The Catalysts

Iron Based Catalysts Feed: Coal **Product: Fuel and Chemicals** (alpha-Olefins, Wax) Cobald Based Catalysts **Feed: Natural Gas Product: Fuel**

- For many years, heterogeneous catalyst preparation being considered a "black art" rather than a scientific endeavour.
- Some reports* have changed this perception.
- One reason is that many industries are highly secretive concerning preparation methodology.

• This real know-how represents the true intellectual property of catalyst preparation.

* R. Schlögl, Heterogene Katalyse - immer noch Kunst oder schon Wissenschaft, Angew. Chem. (1993), 105, Nr. 3, 402

- In general, catalysts used in industrial reactors must have the correct *texture*, *attrition resistance*, and *shape* for the application.
- Texture is a collective term for surface area, pore structure and bulk density.
- The desired texture required for the material and this must be based on a knowledge of the chemistry of the target catalysed reaction.

- Partial oxidation catalysts typically have low surface area and mesopores together with macropores.
- Higher surface area materials would, generally, lead to non-selective oxidation due to sequential oxidation of the desired product.
- In contrast, catalysts for hydrocarbon formation often require high surface areas (e.g. methanol conversion to gasoline).

Examples of solid catalyst

· · · · · · · · · · · · · · · · · · ·	<u>support</u>	
ceramic honeycombes	ceramic honeycombes	

or powders

Stiff supports systems

active compound

transition metals

Platinum, Rhodium, Palladium, Gold, Titanium, Vanadium

Honeycombe structures in various shapes

Unshaped supports:

Powder Bed

Examples of technical catalysts systems

It is important to recognise whether the catalyst must withstand thermal shock, e.g. in car exhaust catalysts, or abrasion, e.g. in entrained bed reactors.

Examples of catalyst requirements

Car exhaust "diesel" from Volkswagen

Examples of catalyst requirements

Car exhaust "diesel" from Volkswagen

- Bulk catalysts and supports
- Support: Crystalline TiO₂ in anatase modification, structured by spray drying or other techniques

granulation: 0,5 µm up to ca. 30 µm

Types of catalyst

Impregnated catalysts starting from preformed supports

ca. 20 - 60 µm

24

ca. 10 - 60 µm

Mixed-agglomerated supports

 $Ti(OC_3H_7)_4 + Sb(CH_3COO)_3$

Mixed-agglomerated 5 % Sb₂O₃ T = 500 °C/air particle size ca. 10 nm

X400.000 10nm 5.0 kV

 $Ti(OC_3H_7)_4 + Sb(CH_3COO)_3$

Mixed-agglomerated 5 % Sb₂O₃ $T = 500 \ ^{\circ}C/N_{2}$ particle size ca. 10 nm

Mixed-agglomerated catalysts

Mixed-agglomerated supports & Impregnation 5 % Sb₂O₃ & 5 % V_{Oxa}

T = 500 °C/air

particle size

ca. 10 nm

- 1. Precipitation or other synthesis process (e.g. sol-gel, solid solid, flame hydrolysis, vapour deposition)
- 2. Hydrothermal transformation
- 3. Decantation, filtration, centrifugation
- 4. Washing
- 5. Crushing and grinding
- 6. Forming and/or shaping operations
- 7. Calcination
- 8. Impregnation
- 9. Mixing

10. Activation, reduction

Industrial catalysts prepared by precipitation or coprecipitation

- Catalysts Important applications
- SiO_2 -Al₂O₃ acid catalysed reaction e.g. FCC isomerisation,
- Fe₂O₃ Fisher Tropsch reaction, ethyl benzene to styrene
- TiO₂ major component of DeNOx catalysts
- ZrO₂-SO₄²⁻ strong acid reactions
- Cu-ZnO/Al₂O₃ methanol synthesis
- (VO) ₂P₂O₇ selective oxidation of butane to maleic anhydride oxidation of pentane to phtalic anhydride + maleic anhydride

Parameters affecting the properties of final precipitate*

* G. Ertl, H. Knözinger and J. Weitkamp (ed.), *"Handbook of Heterogeneous Catalysis",* Wiley VCH, Weinheim, 1997

Typical arrangements of unit operations for manufacturing catalyst*

* J.-F. Le Page, "Applied Heterogeneous Catalysis, Designmanufacture-use of solid catalysts", Technip, Paris (1987)

Catalyst function:

Product formation with participation of oxygen from the catalyst

Study:

What is the effect of using two different TiO₂ supports?

Influence of nano-/ hierarchical-structure in activity and selectivity?

Challenging task:

Development of a hierarchical catalyst leading to C₃H₆

yield higher than 35 % at high selectivities and

near-to- practise conditions!

TiO₂-support

"wrong" granulation !!!

pressed granulate

suitable for storage, shapeable by pressing <u>support</u> big

small distribution, big porous hollow granulate thin long-run stabil, no abrasion

Spray drying technique

granulation: 0,6 µm up to ca. 30 µm

Outlook for spray drying technique

Characterization

Zetapotential/pH-value/profil

PCS/pH-value/profil

Preparation of Supported Catalysts

Schematic representation of a surface polarisation of an oxide particle as a function of the pH of the solution*

* J.B. Stelzer, J. Caro, R. Nitzsche, Zeta potential measurement in catalyst preparation, Chem. Eng. Technol. (2005) in press

Synthesis of TiO₂

Precursor: TiOSO₄ · 2 H₂O · H₂SO₄ precipitation/hydrolysis

* Freeze etching technique

Precursor: $TiOSO_4 \cdot 2H_2O \cdot H_2SO_4$ TiO_2

* Polyol preparation of TiO₂ in DEG

*C. Feldmann, Philips GmbH, Angew. Chem. Int. Ed. 2001, 40, 359 -362

Precursor: $TiOSO_4 \cdot 2H_2O \cdot H_2SO_4$ TiO_2

TiO₂ agglomeration < 1000 nm

ζ/pH-plots of TiO₂ products

Influence of the calcination temperature

Tronox A2 TiO₂ on the ζ /pH-plots of suspended TiO₂

ζ/pH-plots of catalysts

 ζ /pH-plots of suspended in water catalysts which consist of the TiO₂ support (Tronox A2 spray granules) and the active components V₂O₅ and MoO₃. For comparison, the data for the intermediate TiO₂ layer is given (1 and 5 wt.-%)

TiO₂-support

Characterization

primary particle size	ca. 0,5 μm	ca. 10 nm
isoelectric point	-	рН 3.8
(IEP)		
Z-Average	ca. 30 μ m	ca. 4 - 5 μ m
(agglomeration)		
S _{BET}	< 10 m²/g	140 m²/g
XRD	anatase	anatase
strenght	\leq 900 °C	≤ 650 °C

*Hierarchical model

Model of a catalyst built up from a support functionalized by one component

* J.B. Stelzer, H. Kosslick, J. Caro, D. Habel, E. Feike, H. Schubert, *Aufbau hierarchisch strukturierter Oxid-Katalysatoren Teil I*, Chem. Ing. Tech. 75 (7/2003) 872

*Hierarchical model

Model of a catalyst built up from a support functionalized by two components

* J.B. Stelzer, H. Kosslick, M.-M. Pohl, J. Caro, D. Habel, E. Feike, H. Schubert, *Aufbau und katalytische Aktivität hierarchisch nanostruk-turierter Oxid-Katalysatoren Teil II,* Chem. Ing. Tech. 75 (11/2003) 1676

SEM & EDXS

SEM of the spray granule (left) and the EDXS element distribution of Ti (middle) and V (right) 5 % V₂O₅

***TEM images**

TEM of the pure spray granule (left) and impregnated with 10 % V_2O_5 (right)

* M.-M. Pohl, Institut für Angewandte Chemie Berlin-Adlershof e.V.

TiO₂-support + active compound

		20 nm
≅ 1 monolayer	monolayers	amorphous
Impregnation 5 % V ₂ O ₅	Impregnation 10 % V ₂ O ₅	Impregnation 5 % MoO ₃
		(NH ₄) ₆ [Mo ₇ O ₂₄] · 4 H ₂ C
T = 500 °C	T = 500 °C	T = 500 °C
particle size	particle size	particle size
ca. 10 - 20 nm	ca. 10 - 20 nm	ca. 10 - 20 nm

Raman-spectra

*I.E. Wachs, R.Y. Saleh, S.S. Chan, C.C. Chersich, Chemtech. 15 (1985) 756

Catalysts for ODP-testing

(Feed) $C_3H_8/O_2/N_2 = 40/20/40$ $\tau \sim 0.75$ (g-s-ml⁻¹)

active compound	metalloxid [M %]
V ₂ O ₅	1
V ₂ O ₅	5

ODP ; 500 °C; τ ~ 0.75 (g-s-ml⁻¹)

Catalyst	X C ₃ H ₈ [%]	S C ₃ H ₆ [%]	S CO[%]	S CO ₂ [%]	Y C ₃ H ₆ [%]
1 % V ₂ O ₅	4.3	74.3	16.9	8.8	3.2
5 % V ₂ O ₅	21.1	42.7	34.6	20.6	9.0

ODP ; 500 °C; τ ~ 0.75 (g·s·ml⁻¹)

Catalyst	X C ₃ H ₈ [%]	S C ₃ H ₆ [%]	S CO[%]	S CO ₂ [%]	Y C ₃ H ₆ [%]
1 % V ₂ O ₅	6.9	32.4	34.4	31.6	2.2
5 % V ₂ O ₅	9.2	51.4	27.6	20.9	4.7

Catalysts for ODP-testing

(Feed) $C_3 H_8 / O_2 / N_2 = 40/20/40$ $\tau \sim 0.75$ (g-s-ml⁻¹)

active compound	metalloxid [M %]
TiO ₂ /V ₂ O ₅	0.25 / 0.25
TiO ₂ /V ₂ O ₅	1.25 / 1.25

ODP ; 500 °C; τ ~ 0.75 (g-s-ml⁻¹)

Catalyst	X C ₃ H ₈ [%]	S C ₃ H ₆ [%]	S CO[%]	S CO ₂ [%]	Y C ₃ H ₆ [%]		
TiO ₂ -TiO ₂ /V ₂ O ₅ (0.25% /0.25%)	1.3	64.7	19.2	16.1	0.8		
TiO ₂ -TiO ₂ /V ₂ O ₅ (1.25%/1.25%)	13.2	55.6	23.4	21	7.3		
vs one active compound							
$TiO_2 - V_2O_5(1\%)$	4.3	74.3	16.9	8.8	3.2		

ODP ; 500 °C; τ ~ 0.75 (g·s·ml⁻¹)

Catalyst	X C ₃ H ₈ [%]	S C ₃ H ₆ [%]	S CO[%]	S CO ₂ [%]	Y C ₃ H ₆ [%]	
TiO ₂ -TiO ₂ /V ₂ O ₅ (2.5%/2.5%)	16.4	35.9	39.7	24.4	5.9	
vs one active compound						
1 % V ₂ O ₅	6.9	32.4	34.4	31.6	2.2	
5 % V ₂ O ₅	9.2	51.4	27.6	20.9	4.7	

With a relative low content of 1.25 wt.-% V_2O_5 , the nano structured catalyst with intermediate TiO₂ layer shows an improved selectivity at medium propane conversion in comparison with the catalyst where the active component V_2O_5 is directly deposited on the TiO₂ support.

The propene yield of the nano structured catalyst with 1.25 wt.-% V_2O_5 becomes comparable with that of the catalyst containing 5 wt.-% V_2O_5 .

Conclusion

TiO₂-TiO₂/VO_x

Rate of in	crease
X C ₃ H ₈	+ 75 %
YC ₃ H ₆	+ 50 %

However, due to the higher selectivity for the olefin formation, less by products are formed in the case of the nano structured catalyst.

Outlook of preparation

ODP ; 500 °C; τ ~ 0.15 (g-s-ml⁻¹)

Catalyst	X C ₃ H ₈ [%]	S C ₃ H ₆ [%]	S CO[%]	S CO ₂ [%]	Y C ₃ H ₆ [%]
TiO ₂ - VO _{oxa} (10 % V, N ₂)	24.5	43.6	30.9	18.2	10.7
TiO ₂ - VO _{meta} (10 % V, N ₂)	25.4	41.0	31.0	16.6	10.4
TiO ₂ - VO _{py} (10 % V, N ₂)	25.1	42.3	27.4	15.5	10.6

The VO_x-catalysts from different V-precursors $[(VO(C_2O_4) \cdot 2 H_2O, (C_5H_5NH)_4H_2V_{10}O_{28} \cdot 4 H_2O \text{ or } NH_4VO_3]$ are similar in their activity and selectivity in the ODP.

The maximum propene yield was appr. 11 % at conversions of appr. 26 %. Catalysts which were calcined before the catalytic tests in nitrogen are more active then those calcined in air.

1. Period Goal raw material milling process spraydrying heat treatment preliminary stage/solvent

precipitation/hydrolysis

heat treatment

disperse/immobilize synthesis active compounend heat treatment

spreading/disperse

heat treatment

2. Period raw material milling process spraydrying

nano- in situ structure immobilize

synthesis active compounend

heat treatment

TiO₂ spray granulation: $0,6 \mu m$ up to ca. 30 μm

TiO₂ / Sb₂O₃ spray granule

$TiO_2/Sb_2O_3/V_2O_5$ spray granule

ODP ; 500 °C; τ ~ 0.75 (g-s-ml⁻¹)

Catalyst	X C ₃ H ₈ [%]	S C ₃ H ₆ [%]	S CO[%]	S CO ₂ [%]	Y C ₃ H ₆ [%]	
Spray granule TiO	2 + impregr	nated with	Sb ₂ O ₃ /V ₂ O ₅			
TiO ₂ + Sb ₂ O ₃ /V ₂ O ₅ (10 % Sb/V)	18.1	35.4	38.3	24.5	6.5	
Spray granule TiO	₂ /Sb ₂ O ₃ + ii	mpregnate	ed with V ₂ O ₅			
TiO ₂ /Sb ₂ O ₃ -V ₂ O ₅ (10 % Sb/V)	16.6	35.3	38.3	19.1	5.9	
Spray granule TiO ₂ /Sb ₂ O ₃ /V ₂ O ₅						
TiO ₂ /Sb ₂ O ₃ /V ₂ O ₅ (10 % Sb/V)	1.1	86.1	8.8	5.1	0.9	

ANTINE LAN

Outlook for preparation technique

Catalytic OHS-testing

T = 190 - 200 °C, p = 7 bar, t_{mod} = 0,8 g s ml (N)⁻¹ 1,9 % C₄H₈/9,1 % O₂/24 % H₂O/N₂ X(C₄H₈) = 70 %

Conclusion

The AA selectivities are noticeable enhanced by ca. 20 % for the samples C II a and C II b compared to sample C I S HOAc [%] + 20 % The concept of hierarchical catalyst design combined with new synthesis strategies will open a promising route to future improvement of catalysts

Dr. Thiedig + Co

New product: DIGOX 5

Specialist O₂

Application for Inline-CO₂ e.g. brewery

Dr. Thiedig + Co

Cut-out of a measuring probe

Acknowledgement

Financial support of the German Research Council (DFG) (Ca 147/9-2, Schu 679/21-2 and Fe 608/1-2)

Dr. U. Bentrup, Dr. A. Dittmar, Dr. M. Fait, Dr. M.-M. Pohl, G. Hidde, G. Klinger

Prof. Dr. J. Caro

Prof. Dr. H. Schubert, Dr. E. Feike, D. Habel, B. Lange, S. Stephanie

Dr. H.-J. Eberle WACKER

Dr. B. Thiersch

Dr. B. Kubias

Priv.-Doz. Dr. W.-D. Hunnius

Dr. R. Fischer, Dr. H.J. Wernicke

