Modern Methods in Heterogenous Catalysis Research:

Structure Determination by Neutron Diffraction

Elisabeth Irran Institut für Chemie Technische Universität Berlin

History of neutron diffraction

1932 Chadwick discovers the neutron
1936 Mitchell & Powers confirm wave property of neutron
1945 first nuclear reactor: Oak Ridge
1946 Shull & Wollan: first neutron diffraction experiment
1969 Rietveld: Neutron powder diffraction refinement
1994 Nobel prize for Shull and Brockhouse
 "for pioneering contributions to the development of neutron

scattering techniques for studies of condensed matter..."

Properties of the neutron

Mass	1.674928(1)·10 ⁻²⁷ kg
Radius	~ 0.7 fm
Lifetime (free particel)	887 ± 2 sec (~ 15 min)
Spin	1/2
Charge	0
Magnetic moment	-9.6491783(18)·10 ⁻²⁷ J T ⁻¹
	-1.913 μ_N (nuclear magneton)
Quark structure	udd

Properties of the neutron

deBroglie wavelength

 $\lambda = \frac{h}{mv}$

as gas: Maxwell-Boltzmann distribution

$$E = \frac{1}{2} mv^2 = \frac{3}{2} kT$$

 $\lambda^2 = \frac{h^2}{3mkT}$

273 K (thermal neutrons) \rightarrow 1.55A can be used for diffraction experiments

Neutron sources

spallation:

protons injected onto heavy element target yields 20 - 30 neutrons per proton

High flux reactor of ILL, Grenoble

Experimental hall of ILL/Grenonle

after emission neutrons have energies of several MeV, slowed down to thermal energy (room temperature) at a moderator: light or heavy water, graphite

total reflection of neutrons:

neutrons extracted from the moderator by beam tubes or by neutron guides to the experiment

diffraction experiments:

continous source, single wavelength is extracted from the Maxwellian distribution by a monochromator crystal constant wavelength diffraction, angle dispersive

Experimental hall of HMI/Berlin

Spallation as neutron source

ISIS, Rutherford Appleton Laboratory, Chilton/UK

Spallation as neutron source

pulsed neutrons \rightarrow time-of-flight (TOF) experiments

```
one scattering angle, usually at angles 2\theta > 90^{\circ}
```

neutrons sort itselves accordig to their velocity und wavelength, therefore time of flight T is proportional to the wavelength:

$$\mathbf{T} = \frac{I Lm}{h}$$

L total flight path

Neutron reactors

ILL	Institut Laue-Langevin	Grenoble /F	1971
BENSC	Hahn-Meitner-Institut	Berlin /D	1992
FRG-1	Forschungszentrum Geesthacht	near Hamburg /D	1958
FRM-II	TU München	Garching /D	2004
LLB	Laboratoire Léon Brillouin	Gif-sur-Yvette /F	1980
HFIR	Oak Ridge National Laboratory	Oak Ridge /USA	

Spallation Sources

ISIS	Rutherford Appleton Laboratory	Oxford /UK	1985
SINQ	Paul Scherrer Institut	Villigen /CH	1996
LANSCE	Los Alamos National Laboratory	Los Alamos /USA	
IPNS	Argonne National Laboratory	Argonne /USA	
KENS	High Energy	Tsukuba /Jpn.	

Detection of neutrons

proportional counter:

 ${}^{10}\text{BF}_3 \text{ gas tube: } {}^1\text{n} + {}^{10}\text{B} \rightarrow {}^7\text{Li} + {}^4\text{He} + \gamma$ ${}^3\text{He gas tube: } {}^1\text{n} + {}^3\text{He} \rightarrow {}^3\text{H} + {}^1\text{H} + \gamma$

scintillator or NIP (neutron imaging plate) converter: ${}^{1}n + {}^{6}Li \rightarrow ({}^{7}Li) \rightarrow {}^{3}He + {}^{4}He + \gamma$

Neutron (non-magnetic) diffraction

Intensity
$$I_{hkl}$$

 $I_{hkl} = |F_{hkl}|^2 \cdot LP \cdot A$

LP Lorentz-polarisation factor*A* absorption

X-ray structure factor F_{hkl}

$$F_{(h,k,l)} = \sum_{j=1}^{atoms} f_{(j)} \exp\left[2\pi \cdot i(hx_{(j)} + ky_{(j)} + lz_{(j)})\right]$$

neutron structure factor F_{hkl}

$$F_{hkl} = \sum_{j} b_j e^{-W_j} e^{2\pi i (hx_j + ky_j + lz_j)}$$

Neutron (non-magnetic) diffraction

Atomic form factors *f* for X-ray diffraction

Scattering lengths *b* for neutron diffraction

Xe

Scattering length b

Properties

- interaction with the nucleus (very small compared to neutron wavelength)
- scattering length independent of atomic number
- b in the same order of magnitude
- b independent of wavelength
- every isotope has its own b
- dimension of *b*: $1 \text{ fm} = 10^{-15} \text{ m}$
- b positive or negative
- scattering power much smaller than X-rays

Consequences

no decrease of intensity with 2θ temperature factors more accurate neighbouring elements can be distinguished light elements can be detected besides heavy elements

larger sample necessary

Absorption cross sections σ_{abs}

Absorption: usually small

sample environment (furnace,...) no problem

but: resonance absorber: high absorption (³He, ⁶Li, ¹⁰B, ¹¹³Cd, ¹⁴⁹Sm, ¹⁵⁷Gd)

used as absorber, avoided in diffraction

dependent on cross section σ_{abs} dimension of σ : 1 barn = 10⁻²⁴ cm²

Scattering lengths *b* for neutron diffraction

ZSymbA	p or T _{1/2}	I	be	b+	b.	c	σ_{coh}	σ inc	σscatt	σabs
0-N-1	10.3 MIN	1/2	-37.0(6)	0	-37.0(6)		43.01(2)		43.01(2)	0
1-H			-3.7409(11)				1,7568(10)	80.26(6)	82.02(6)	0.3326(7)
1-H-1	99,985	1/2	-3.7423(12)	10.817(5)	-47.420(14)	+/-	1.7583(10)	80.27(6)	82.03(6)	0.3326(7)
1-H-2	0.0149	1	6.674(6)	9.53(3)	0.975(60)		5.592(7)	2.05(3)	7.64(3)	0.000519(7)
1-H-3	12.26 Y	1/2	4.792(27)	4.18(15)	6.56(37)		2.89(3)	0.14(4)	3.03(5)	< 6.0E-6
2-He			3.26(3)				1.34(2)	0	1.34(2)	0.00747(1)
2-He-3	0.00013	1/2	5.74(7)	4.7(5)	8.8(1.4)	Е	4.42(10)	1.6(4)	6.0(4)	5333.0(7.0)
2-He-4	0.99987	0	3.26(3)				1.34(2)	0	1.34(2)	0
3-Li			-1.90(3)				0.454(10)	0.92(3)	1.37(3)	70.5(3)
3-Li-6	7.5	1	2.0(1)	0.67(14)	4.67(17)	+/-	0.51(5)	0.46(5)	0.97(7)	940.0(4.0)
3-Li-7	92.5	3/2	-2.22(2)	-4.15(6)	1.00(8)	+/-	0.619(11)	0.78(3)	1.40(3)	0.0454(3)
4-Be-9	100	3/2	7.79(1)				7.63(2)	0,0018(9)	7.63(2)	0.0076(8)
5-B			5.30(4)				3.54(5)	1.70(12)	5.24(11)	767.0(8.0)
5-B-10	19.4	3	-0.2(4)	-4.2(4)	5.2(4)		0.144(6)	3.0(4)	3.1(4)	3835.0(9.0)
5-B-11	80.2	3/2	6.65(4)	5.6(3)	8.3(3)		5.56(7)	0.21(7)	5.77(10)	0.0055(33)
6-C			6.6484(13)				5.551(2)	0.001(4)	5.551(3)	0.00350(7)
6-C-12	98.89	0	6.6535(14)				5.559(3)	0	5.559(3)	0.00353(7)
6-C-13	1.11	1/2	6.19(9)	5.6(5)	6.2(5)	+/-	4.81(14)	0.034(11)	4.84(14)	0.00137(4)

http://www.ati.ac.at/~neutropt/scattering/table.html

Neutron powder diffraction

Vanadium sample cans

neutron powder diffraction

Neutron powder diffraction

Portion of the first powder diffraction pattern of NaCl taken at Oak Ridge by Shull and Wollan

Localization of light elements: hydrogen (deuterium)

COUNTER ANGLE

COUNTER ANGLE

ZSymbA	p or T _{1/2}	Ι	be	b+	b_	c	σcoh	σ inc	σscatt	σabs
0-N-1	10,3 MIN	1/2	-37.0(6)	0	-37.0(6)		43.01(2)		43.01(2)	0
1-H			-3.7409(11)				1.7568(10)	80.26(6)	82.02(6)	0,3326(7)
1-H-1	99,985	1/2	-3.7423(12)	10.817(5)	-47.420(14)	+/-	1.7583(10)	80.27(6)	82.03(6)	0.3326(7)
1-H-2	0.0149	1	6.674(6)	9.53(3)	0.975(60)		5,592(7)	2.05(3)	7.64(3)	0.000519(7)
1-H-3	12.26 Y	1/2	4.792(27)	4.18(15)	6.56(37)		2.89(3)	0.14(4)	3.03(5)	< 6.0E-6

after C.G. Shull, E.O. Wollan, G.A. Morton, and W.L. Davidson, *Phys. Rev.* 73, 482 – 487 (1948)

Localization of light elements: deuterium

Fig. 6: Pattern Taken for a Sample of Powdered D₂O Ice.

after E.O. Wollan, W.L. Davidson, and C.G. Shull[,], *Phys. Rev.* **75**, 1348 – 1352 (1949)

Localization of light elements: oxygen in ZrV₂O₇

after N. Khosrovani, A.W. Sleight, and T. Vogt, J. Solid State Chem. 123, 355 – 360 (1997)

Differentiation between neighbouring elements

 $Cu_8[P_{12}N_{18}O_6]Cl_2 \text{ sodalite}$

N/O ordered or not?

ZSymbA	p or T _{1/2}	I	be	\mathbf{b}_{+}	b.	c	σ_{coh}	σ inc	σscatt	σabs
7-N			9.36(2)				11.01(5)	0.50(12)	11.51(11)	1.90(3)
7-N-14	99,635	1	9.37(2)	10.7(2)	6.2(3)		11.03(5)	0.50(12)	11.53(11)	1.91(3)
7-N-15	0.365	1/2	6.44(3)	6.77(10)	6.21(10)		5.21(5)	0.00005(10)	5.21(5)	0.000024(8)
8-O			5.805(4)				4.232(6)	0.000(8)	4.232(6)	0.00019(2)
8-O-16	99,75	0	5.805(5)				4.232(6)	0	4.232(6)	0.00010(2)
8-O-17	0.039	5/2	5.6(5)	5.52(20)	5.17(20)		4.20(22)	0.004(3)	4.20(22	0.236(10)
8-O-18	0.208	0	5.84(7)				4.29(10)	0	4.29(10)	0.00016(1)

after N. Stock, E. Irran, and W. Schnick, Chem. Eur. J. 4, 1822 (1998)

Differentiation between neighbouring elements

Rietveld refinement of neutron powder data D2B at ILL/Grenoble:

N/O statistically distributed

X-ray powder diffraction pattern

Neutron powder diffraction pattern

Neutron magnetic diffraction

interaction with electrons of the atomic shell magnetic form factor is angle dependent

results:

- magnetic ordering
- orientation of the electron spins (experiments with polarized neutrons)
- valence distribution (magnetic momentum)

Ordering of the spins

spins:

- a) disordered: paramagnetic
- b) parallel: ferromagnetic
- c) antiparallel: Néel type antiferromagnetic
- d) uncompensated: Néel type ferrimagnetic
- e) triangular antiparallel: ferrimagnetic
- f) helical spiral: compensated antiferromagnetic
 - or uncompensated ferrimagnetic
- g) canted: weak ferromagnetic
- h) canted: compensated antiferromagnetic

Magnetic ordering in ferromagnets

a) simple spiralb) conical spiralc) complex spiral

Schematic phase diagram of bulk Holmium

Magnetic ordering in the antiferromagnet MnO

after C.G. Shull and J. S. Smart, *Phys. Rev.* **76**, 1256 - 1256 (1949)

Magnetic ordering in the antiferromagnet MnF₂

FIG. 1. Neutron diffraction patterns for MnF_2 in the paramagnetic state (295°K) and in the antiferromagnetic state (23°K). The unit cells for antiferromagnetic and nuclear scattering are of the same size.

FIG. 4. Magnetic structure of MnF_2 showing the order and orientation of the Mn^{++} magnetic moments. The small circles correspond to fluorine sites.

after R. A. Erickson, Phys. Rev. 90, 779 - 785 (1953)

Magnetic diffraction with polarised neutrons

DyFe₄Al₈ complex cycloidal magnetic configuration

UFe₄Al₈ U: weak ferromagnetism Fe: almost antiferromagnetic

J.A. Paixao, P.J. Brown, B. Lebech, and G.H. Lander in: *Exploring Matter with neutrons*, ILL, 2000.

Conclusion

Neutron diffraction

- is complementary to X-ray diffraction
- allows us to detect light elements besides heavy elements
- neighbouring elements can be distinguished
- reliable temperature factors
- magnetic ordering determined