A practical model situation

- TPR of metal oxide by hydrogen diluted in nitrogen.
- Competitive adsorption of nitrogen (first order) and hydrogen (second order).
- Flow experiment (kinetic vs. thermodynamic control, re-adsorption).

Parameters of the first-order model

Parameter	Value	Dimension
S	1×10^6	cm^2/g
N *	1×10^{-9}	mol/cm ²
σ	9.8×10^8	cm ² /mol
Μ	28 ^a	g/mol
	2^{b}	g/mol
R	8.314	J/(K·mol)
F	10	$\mathrm{cm}^3/\mathrm{s}\cdot\mathrm{g}$)
β	0.1	K/s
Ea ^C	10.0×10^{3}	J/mol
Ac	1 ^a	_a
	1×10^{9b}	cm ² /mol ^D
e d	60.0×10^3	J/mol
Ad	1×10^{10} to 1×10^{13}	$s^{-1}a$
u	1×10^{19} to 1×10^{22}	$\mathrm{cm}^2/(\mathrm{s}\cdot\mathrm{mol})^\mathrm{b}$

model results: activation energies

Temperature-programmed methods

Reaction rate: second order

$$C_{(T)} = \frac{S + N^{*2} \Theta^2 A_d \exp^{(-E_d/RT)}}{F + S N^{*2} (1 - \Theta)^2 \sigma (RT/2\pi M)^{1/2} A_a \exp^{(E_d/RT)}}$$

$$\Theta/dT = -\frac{F}{S \beta N^*} C_{(T)}$$

Dissociative adsorption requires two sites per elementary step. Still simplistic, as no provison for surface re-arrangement of the adsorbates is being made: further terms are required, in particular for strongly sticking molecules or at low temperatures

d

Model: second order

Temperature-programmed methods

Model: second order

Temperature-programmed methods

Ag-O: functional distinction of oxygen 02 Ag(111) οα O_{γ} O_β sub-oxide oxidising basic oxidation epoxidation de-hydrogenation Local chemical bonding metal oxide ecides Tower ature programmed methods total oxidation AV. DIANCE CESELISCHAE

Oxidative Dehydrogenation of Methanol over Ag

Analytical data and temperatureprogrammed reaction experiments suggest several independent reaction channels and hence several active oxygen species.

L. Lefferts, J.G. van Ommen, J. H.R. Ross, Trans. Faraday Soc., 84, (1988), 1491

Temperature-programmed methods

Oxidative Dehydrogenation of Methanol over Ag

Surface science model experiments identify one chemically active atomic oxygen species

Assigning , however several chemical functions to the

same specis (acie base vs. oxidative)

adix, J.T. Reproperiate Series in Syram Repetion and Hod 894, p.9

rds in OCM

Selective and Total Oxidation of MeOH

There are clearly two reaction pathways for MeOH oxidation with differing selectivities

Electrolytic silver

pre-dosing with 100 mbar oxygen at 873 K for 5 min

hodsin MeOH at 10⁻⁵ mbar

Ag as Storage Medium for Active Oxygen

In analogy to "lattice oxygen" Ag can store selectively acting atomic oxygen.

Under the conditions of a pulse experiment at ambient pressure formic acid is a consecutive

product.

Ag-O: speciation by TDS

TDS allows to isolate 3 diffrent atomic oxygen species

Catalyst conversion coincides not with the ,,surface atomic" oxygen

species

AC

Temperature-programmed methods

MAX-PLANCK-GESELLSCHAFT

Ag-O: solid state transformation in TDS multiple

multiple experimental series are required to obtain characteristic desorption traces

high-pressure dosing and cyclisation essential,

FHI The changes in ordinate scale!

little effect in static experiments

The non-equilibrium nature

The identification of bulk dissolved and surfaceembedded oxygen depends critically on the conditions of TDS (2.5 K/s)

 $\stackrel{\cong}{\vdash}$ Electrolytic silver

pre-dosing with 100 mbar oxygen at 873 K for 5 min

Facetting

in oxygen

FHI

Ag-O: mode of action: MeOH

Surface abundance of alpha oxygen (green) is detrimental for selectivity

> Alpha oxygen is required to form other atomic oxygen species:

Site separaton

Mode of Action in EO Synthesis

The presence of dehydrogenating oxygen (purple) next to electrophilic oxygen is detrimental for the selectivity.

TPR

- Reduction of a metal oxide is a frequent process to generate metal catalysts
- In oxidation cataylsis it occurs as deactivation process and is undesired.
- As gas solid interaction it is very dependent on kinetic details.

TPR: A Chemical Process

$$-\frac{d[MO_n]}{dt} = k_{red} [H_2]^p f([MO_n])$$

in which

k_{red}

- $[MO_n]$ is the concentration of metal oxide
- [H₂] is the concentration of hydrogen gas
 - is the rate constant of the reduction reaction
 - is the order of the reaction in hydrogen gas
 - is the function which describes the dependence of the rate of reduction on the concentration of metal oxide is the time.

A model function is required

(2-4)

TPR: The observation

$$\frac{d\alpha}{dT} = \frac{\nu}{\beta} e^{-\frac{E_{red}}{RT}} f(1-\alpha)$$

TPR: Simple model functions

TPR: Thermodynamics

- Many reductions are only weakly exothermic.
- The virtual partial pressure plays an important role in controlling the extent of reaction.
- Great care must be taken in experimental analysis.
- Often water is added to feed to control the reduction extent.

TPR: Energetics

• The energetics is controlled by the chemical potential of the reductant:

 $\Delta G = n RT ln [(pH_2O/pH_2)/pH_2O/pH_2)eq]$

Metal	Oxide	$(p(H_2O)/p(H_2))_{eq}$
Ti	TiO ₂	4·10 ⁻¹⁶
	TiO	2.10-19
V	V_2O_5	6.10-4
	VO	$2 \cdot 10^{-11}$
Cr	Cr ₂ O ₃	3.10-9
Mn	MnO ₂	10
	MnO	$2 \cdot 10^{-10}$
Fe	Fe ₂ O ₃	0.7
deserve particular de la compañía d	FeO	0.1
Со	CoO	50
Ni	NiO	500
Cu	CuO	$2 \cdot 10^{8}$
	Cu ₂ O	2.10^{6}
Μο	MoO	40
	MoO ₂	0.02
Ru	RuO ₂	10 ¹²
Rh	RhO	10 ¹³
Pd	PdO	10 ¹⁴
Ag	Ag ₂ O	3·10 ¹⁷
Ir	IrO	1013

Temperature-programmed methods

TPR: An example

Bulk iron oxide particles in a TPR experiment: wet and dry relate to post-reaction drying of the same hydrogen stream

TPR: phase diagram and water

Water changes the reduction temperature drastically

TPR: Kinetics and Water

wet: 2% water in H₂

Wimmers et al: J. Phys. Chem., 90, (1986), 1331

