A practical model situation

* TPR of metal oxide by hydrogen diluted in
nitrogen.

* Competitive adsorption of nitrogen (first
order) and hydrogen (second order).

* Flow experiment (kinetic vs.
thermodynamic control, re-adsorption).
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Parameters of the first-order
model

Parameter Value Dimension
S 1 x 10° em?/g
N * 1 x 10—9 mol/cm2
g 9.8 x 108 cmzlmol
M 282 g /mol
2P g/mol
8.314 J/(K+mol)
F 10 cm3/s-g)
B 0.1 K/s
Ea® 10.0 x 10° J /mol
A © 12 _a
4 1 x 109]0 cmzlmolb
E° 60.0 x 10° 3 /mol
AC 1 x 1019 t0 1 x 103 s la

19

1 x 10 t01><].022

c:mzl(s-mol)b




model results: activation energies
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model results: other parameters
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Reaction rate: second order

S+N*2Q2 A, eXp(-Ed/RT)

C —
(T)
F+SN*2(1- Q2 s (RT/2pM)12 A_ exp € /RT)
F
dQ/dT = - Co,
S b N*

Dissociative adsorption requires two sites per elementary step.
Still simplistic, as no provison for surface re-arrangement
of the adsorbates i1s being made: further terms are required,
in particular for strongly sticking molecules or at low temperatures
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Model: second order
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Model: second order
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Ag-O: functional distinction of oxygen
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Oxidative Dehydrogenation of
Methanol over Ag

(%) Analytical data and
temperature-
programmed reaction
experiments suggest
several independent
1 reaction channels and
0 300 500 900 hence several active

Temp (g)—ég gelcius) OXygen S PeC I1es.

L. Lefferts, J.G. van Ommen, J. H.R. Ross, Trans. Faraday Soc., 84, (1988), 1491

I, consumption (arb. units)
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Oxidative Dehydrogenation of
Methanol over Ag
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An Extreme Function of
Nucleophilic Oxygen

2CH,, 2CH3+
H
2

Electrolytic silver,
8.4 O,: 77 CH,/He,

SV 8000 h-!,
heating rate 5 K-!

-1 10

Conversion 10%

% Selectivity to C2 Products
% Selectivity to CO, Products
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rds in OCM
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The apparent activation

Facetted Ag reveals a
iform apparent activation
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lon Current

Selective and
Total Oxidation
of MeOH

There are clearly two
reaction pathways for
MeOH oxidation with

differing selectivities

Electrolytic silver

pre-dosing with 100 mbar oxygen at
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Ag as Storage Medium for Active
Oxygen

100 |

In analogy to
Jlattice oxygen"
Ag can store

80 |

60 |
atomic oxygen.
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Under the conditions of a
pulse experiment at
ambient pressure formic




AC

Ag-0: speciation by TDS
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TDS allows to
isolate 3 diffrent
atomic oxygen
species

Catalyst
conversion co-
incides not with
the ,,surface
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Ag-0: solid state transformation
in TDS
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The non-equilibrium nature
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The 1dentification of bulk
dissolved and surface-
embedded oxygen depends

critically on the conditions
of TDS (2.5 K/s)

Electrolytic silver

-dosing with 100 mbar oxygen at 873
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Ag-0O: mode of action: MeOH

Surface abundance of

| | alpha oxygen (green)
b | B is detrimental for
F \ 5 selectivity
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Mode of Action in EO Synthesis
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The presence of
dehydrogenating
oxygen (purple)
hext to
electrophilic
oxygen is
detrimental for
the selectivity.



TPR

* Reduction of a metal oxide 1s a frequent
process to generate metal catalysts

 In oxidation cataylsis it occurs as de-
activation process and 1s undesired.

* As gas —solid interaction it 1s very
dependent on kinetic details.
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AC

TPR: A Chemical Process

d[MO,]

—— = ko [H, V7 F(1MO, D) (2-4)

in which
[MO,] is the concentration of metal oxide
[H,] is the concentration of hydrogen gas
K is the rate constant of the reduction reaction

p is the order of the reaction in hydrogen gas

f is the function which describes the dependence of the rate of reduction
on the concentration of metal oxide

t is the time.

A model function is required
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TPR: The observation

is the fraction of reduced material

is the function of the fraction of unreduced material
is the preexponential factor

is the heating rate, dT/dt

is the activation energy of the reduction reaction

is the gas constant

is the temperature.
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TPR: Simple model functions

) metal oxide
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Degree of reduction, o
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AC

TPR: Thermodynamics

Many reductions are only weakly exothermic.

The virtual partial pressure plays an important
role 1in controlling the extent of reaction.

Great care must be taken 1n experimental
analysis.

Often water 1s added to feed to control the
reduction extent.
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TPR: Energetics

* The energetics 1s controlled by the chemical
potential of the reductant:

DG =n RT In [(pH,O/pH,)/pH,O/pH,)eq]
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AC

Metal Oxide (p(HZO)/ p(Hz))eq
Ti TiO, 410"
TiO 210"
V VZ05 6' 10-4
VO 2:-10M
Cr Cr,0, 3-10°
Mn MnO, 10
MnO 2:10™°
Fe Fe,0, 0.7
FeO 0.1
Co CoO 50
Ni NiO 500
Cu CuO 2-108
Cu,0O 2-10°
Mo MoO, 40
MoO, 0.02
Ru RuO, 10"
Rh RhO 10"
Pd PdO 10
Ag Ag,0 3-107
Ir IrO, 10"
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TPR: An example

TPR  Fe,0,

v/

500 950 600 650 700

AC

Temperature (K)
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750

Bulk 1ron oxide
particles in a TPR
experiment: wet and dry
relate to post-reaction drying
of the same hydrogen stream




TPR: phase diagram and water

-— T(K)

1q00 590 200

Water changes the reduction
temperature drastically
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TPR: Kinetics and Water

By
- dry ¥,
P4 .
- 11 A9/, wet: ,
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Wimmers et al:
J. Phys. Chem., 90, (1986), 1331
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